首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have examined the role of DNA synthesis in the induced differentiation of erythropoietin-responsive cells (ERC) by using cultured marrow cells from plethoric rats. In such marrow cell populations there are minimal numbers of differentiated erythroid cells permitting the study of erythropoietin action on the non-differentiated primitive ERC. Cytosine arabinoside (10−4 M) and 5-fluorodeoxyuridine (10−7 M) were used for inhibition of DNA synthesis. The data indicate that DNA synthesis is not required for the early steps in the initiation of RNA synthesis or hemoglobin synthesis by erythropoietin. The evidence suggests, however, that ERC may be sensitive to erythropoietin only in a cell cycle phase after S. This period, presumably in G2, is approx. 85 min long. The full response to erythropoietin, therefore, requires DNA synthesis both to replenish the G2 compartment and to permit amplification divisions of induced cells.  相似文献   

3.
Evidence for an erythropoietin receptor protein on rat bone marrow cells   总被引:6,自引:0,他引:6  
Rat bone marrow cells, in vitro, respond to erythropoietin by increased RNA synthesis even in the absence of protein synthesis. Trypsin treated cells lose their ability to respond to the hormone if protein synthesis is inhibited, but retain responsiveness if protein synthesis is permitted during the incubation. The data suggest that a protein receptor on the external surface of the responsive cells is required for the action of erythropoietin on marrow cells.  相似文献   

4.
Renal fibrosis and anaemia are two of the most relevant events in chronic kidney disease. Fibrosis is characterized by the accumulation of extracellular matrix proteins in the glomeruli and tubular interstitium. Anaemia is the consequence of a decrease in erythropoietin production in fibrotic kidneys. This work analyses the possibility that the accumulation of abnormal collagens in kidney interstitium could be one of the mechanisms responsible for erythropoietin decreased synthesis. In renal interstitial fibroblast grown on collagen I, erythropoietin mRNA expression and HIF‐2α protein decreased, whereas focal adhesion kinase protein (FAK) phosphorylation and proteasome activity increased, compared to cells grown on collagen IV. Proteasome inhibition or FAK inactivation in cells plated on collagen I restored erythropoietin and HIF‐2α expression. FAK inhibition also decreased the collagen I‐dependent proteasome activation. In a model of tubulointerstitial fibrosis induced by unilateral ureteral obstruction in mice, increased collagen I protein content and an almost complete disappearance of erythropoietin mRNA expression were observed in the ureteral ligated kidney with respect to the contralateral control. Interestingly, erythropoietin synthesis was recovered in obstructed mice treated with proteasome inhibitor. These data suggest that reduced kidney erythropoietin synthesis could be caused by the accumulation of abnormal extracellular matrix proteins.  相似文献   

5.
A single dose of erythropoietin stimulates DNA synthesis in the spleen of the polycythemic mouse with the maximum effect occurring 48 h after the hormone is administered. The increase in DNA synthesis is accompanied by morphologic evidence of increased erythropoiesis and by increases in the activities per cell of both thymidine kinase and cytoplasmic high molecular weight DNA polymerase-alpha. The activity of low molecular weight DNA polymerase-beta does not change significantly. Spleen cells from mice which had received either erythropoietin or saline 48 h previously were separated into 7 density classes on discontinuous bovine serum albumin gradients. Following the administration of erythropoietin, thymidine incorporation and thymidine kinase activity showed the greatest relative increases per nucleated cell in layers 3, 4 and 5 of the gradient. DNA polymerase-alpha showed the greatest increase in cells of the denser layers 5, 6 and 7. Each layer contained normoblasts and lymphocytes. The less well differentiated erythroid elements constituted a larger proportion of cells in layers of lower density. Increases in the rates of thymidine incorporation were better correlated with increases in thymidine kinase activity than with increases in DNA polymerase activities. Measurement of iron incorporation into heme confirm the morphological impression that the cell type responsible for increased thymidine incorporation and increased DNA polymerase-alpha activity is the young normblast.  相似文献   

6.
The response of polycythaemic mice to a standard dose of erythropoietin has been measured at various time intervals after single or repeated injections of hydroxyurea. The results exclude S phase of the cell cycle as the period responsive to erythropoietin. They suggest the existence of feedback mechanisms within the cell cycle, operating at the G1--S boundary and within the G1 phase. Hydroxyurea given to polycythaemic mice at various time intervals after erythropoietin induced characteristic changes in the response. These changes can be explained if both gradual transit of differentiated cells into the DNA synthesis (S phase) and changes in amount of the erythropoietin sensitive cells caused by the feedback mechanisms operating in the cell cycle are considered.  相似文献   

7.
The response of polycythaemic mice to a standard dose of erythropoietin has been measured at various, time intervals after single or repeated injections of hydroxyurea. The results exclude S phase of the cell cycle as the period responsive to erythropoietin. They suggest the existence of feedback mechanisms within the cell cycle, operating at the G1-S boundary and within the G1 phase. Hydroxyurea given to polycythaemic mice at various time intervals after erythropoietin induced characteristic changes in the response. These changes can be explained if both gradual transit of differentiated cells into the DNA synthesis (S phase) and changes in amount of the erythropoietin sensitive cells caused by the feedback mechanisms operating in the cell cycle are considered.  相似文献   

8.
Rat marrow cells were preincubated for 45 hours with 5.5 × 10?4M sodium hexachloroiridate. This treatment abolished DNA synthesis whilst improving cell survival over that of controls. The synthesis of RNA, protein and glycoprotein continued and could be further increased by the addition of erythropoietin for up to 44 more hours. Heme synthesis also continued in the absence of DNA synthesis but could not be stimulated by erythropoietin.  相似文献   

9.
Erythropoietin receptor signalling is required for normal brain development.   总被引:24,自引:0,他引:24  
Erythropoietin, known for its role in erythroid differentiation, has been shown to be neuroprotective during brain ischaemia in adult animal models. Although high levels of erythropoietin receptor are produced in embryonic brain, the role of erythropoietin during brain development is uncertain. We now provide evidence that erythropoietin acts to stimulate neural progenitor cells and to prevent apoptosis in the embryonic brain. Mice lacking the erythropoietin receptor exhibit severe anaemia and defective cardiac development, and die at embryonic day 13.5 (E13.5). By E12.5, in addition to apoptosis in foetal liver, endocardium and myocardium, the erythropoietin receptor null mouse shows extensive apoptosis in foetal brain. Lack of erythropoietin receptor affects brain development as early as E10.5, resulting in a reduction in the number of neural progenitor cells and increased apoptosis. Corresponding in vitro cultures of cortical cells from Epor(-/-) mice also exhibited decreases in neuron generation compared with normal controls and increased sensitivity to low oxygen tension with no surviving neurons in Epor(-/-) cortical cultures after 24 hour exposure to hypoxia. The viability of primary Epor(+/+) rodent embryonic cortical neurons was further increased by erythropoietin stimulation. Exposure of these cultures to hypoxia induced erythropoietin expression and a tenfold increase in erythropoietin receptor expression, increased cell survival and decreased apoptosis. Cultures of neuronal progenitor cells also exhibited a proliferative response to erythropoietin stimulation. These data demonstrate that the neuroprotective activity of erythropoietin is observed as early as E10.5 in the developing brain, and that induction of erythropoietin and its receptor by hypoxia may contribute to selective cell survival in the brain.  相似文献   

10.
Erythropoietin, the primary inducer of red blood cell differentiation, has no effect on RNA synthesis by isolated bone marrow nuclei. A cytoplasmic fraction from marrow cells exposed to erythropoietin does, however, stimulate RNA synthesis by such nuclei. This marrow cell cytoplasmic factor (MCF) also stimulates RNA synthesis by liver and kidney nuclei, whereas erythropoietin has no effect on intact kidney or lung cells. MCF appears rapidly in cells after addition of erythropoietin, and its formation does not require protein synthesis. MCF is inactivated by trypsin, but not by ribonuclease. The data suggest that erythropoietin acts on the responsive cells to generate a cytoplasmic protein that mediates the effect of the hormone on nuclear RNA synthesis.  相似文献   

11.
Bone marrow cells from methenolone acetate injected normal or hypertransfused polycythemic rats were cultured with erythropoietin. Heme synthesis rate in these cells was apparently increased as compared to control bone marrow cells similarly cultured. Plasma erythropoietin activity of methenolone treated rats was not detectable either by in vivo nor by in vitro assay methods. It was suggested that methenolone stimulates erythropoiesis by increasing the number and/or sensitivity of erythropoietin responsive cells.  相似文献   

12.
Urinary tract infections (UTI) are one of the most common infectious diseases worldwide. The majority is caused by uropathogenic Escherichia coli. Emerging resistances against conventional antimicrobial therapy requires novel treatment strategies. Beside its role in erythropoiesis, erythropoietin has been recognized to exert tissue-protective and immunomodulatory properties. Here, we investigated the nonerythropoietic erythropoietin analogue ARA290 for potential properties to modulate uroepithelial infection by E. coli in a cell culture model. Expression of the erythropoietin receptor was increased by bacterial stimuli and further enhanced by ARA290 in bladder epithelial cell lines and primary cells as well as in the monocytic cell line THP-1. Stimulation with ARA290 promoted an immune response, inducing a strong initial, but temporarily limited interleukin-8 induction. Moreover, the invasion of bladder epithelial cells by E. coli was significantly reduced in cells costimulated with ARA290. Our results indicate that the erythropoietin analogue ARA290 might be a candidate for the development of novel treatment strategies against UTI, by boosting an early immune response and reducing bacterial invasion as a putative source for recurrent infections.  相似文献   

13.
The effect of the hormone, erythropoietin, on cultures of erythroblasts derived from the livers of fetal C57BL/6J mice was examined. An increase both in the content and in the rate of synthesis of normal adult mouse globin chains was detected in hormone-treated cultures. The rate of protein synthesis by individual erythroblasts does not increase in response to the hormone, whereas the absolute number of hemoglobin-synthesizing cells does increase and accounts for the observed stimulation of hemoglobin synthesis. The principal effect of erythropoietin appears to be upon the population of immature erythroid precursor cells which persists in the presence of the hormone, the cells maintaining their ability to replicate, and their capacity to differentiate into hemoglobinizing erythroblasts. In the absence of hormone, already committed erythroblasts continue their development, but erythropoiesis is not sustained.  相似文献   

14.
Interleukin-1 (IL-1) induces the formation of PGE2 from monocytes, fibroblasts, muscle cells, and brain tissue by increasing the intracellular concentrations of CA2+; this cation, in turn, activates a phospholipase which cleaves arachidonic acid from either diacylglycerol or a membrane phospholipid. In addition, IL-1 increases the synthesis of cyclooxygenase, as evidenced by the increased conversion of arachidonic acid into prostaglandins after fibroblasts are pre-incubated with IL-1. Evidence is also presented that fever is caused by interleukin-1-induced prostaglandin E2.  相似文献   

15.
Abstract. The primitive burst-forming unit-erythroid (BFU-e) derived from normal and regenerating murine bone marrow was examined by velocity sedimentation at unit gravity. An increase in the modal sedimentation velocity and the percentage of rapidly sedimenting BFU-e was found in regenerating marrow as compared to normal marrow. Neither hypertransfusion-induced plethora nor administration of erythropoietin (Ep) during regeneration altered the changes from normal in the velocity sedimentation profile observed during regeneration. Separated marrow cells were pooled as rapidly sedimenting and slowly sedimenting and then examined for percentage of BFU-e in DNA synthesis and growth response in vitro to increasing concentrations of a partially purified Ep preparation. The percentage of BFU-e in DNA synthesis as determined by tritiated thymidine killing does not correspond to the BFU-e growth response to Ep in vitro . No difference in growth was noted between BFU-e from rapidly and slowly sedimenting normal marrow cells despite an increased percentage in DNA synthesis of normal BFU-e which sedimented rapidly. No significant difference in the percentage of BFU-e in DNA synthesis was found between the rapidly and slowly sedimenting subpopulations of regenerating BFU-e, but the latter had a reduced growth response to low concentrations of Ep.  相似文献   

16.
Techniques of cell separation were used to isolate murine erythroid precursors at different states of maturation. Cells were studied before and after short-term incubation in the presence or absence of erythropoietin. Complementary results were obtained by direct examination of the cell fractions and by the short-term culture experiments. Indices of heme synthesis, including incorporation of 59Fe or [2-14C]glycine into heme and activity of delta-aminolevulinic acid synthetase, were already well developed in the least mature cells, chiefly pronormoblasts. Activity then rose moderately in the cell fractions consisting primarily of basophilic and polychromatophilic normoblasts, and fell off with further increases in cell maturity. On short-term culture in the presence of erythropoietin, activity declined with increasing cell maturation except in the least mature fraction where the original level of activity was maintained. By contrast, synthesis of labeled hemoglobin ([3H]leucine) was very low in the least mature cell fractions and rose progressively with increasing cell maturity. The rate of hemoglobin synthesis increase in cells at all stages of maturation when cultured in the presence of erythropoietin. Despite the different patterns observed for heme synthesis and hemoglobin synthesis, both synthetic activities were consistently higher in cells cultured with erythropoietin as compared to controls. These findings suggest that erythropoietin stimulates biochemical differentiation of erythroid precursors at various stages of maturation. They also demonstrate an asynchronism between heme synthesis and hemoglobin syhthesis; heme synthesis is already well developed in the least mature erythroid cells and begins to diminish as the capacity for hemoglobin synthesis continues to rise.  相似文献   

17.
The physiological status of carbon-starved cells of the marine Vibrio sp. strain S14 has been investigated by the analysis of their immediate response to carbon and energy sources. During the first minute after glucose addition to 48-h-starved cells, the pools of ATP and GTP increased rapidly, and the [ATP]/[ADP] ratio reached the level typical for growing cells within 4 min. The total rates of RNA and protein synthesis increased initially but were inhibited 4 to 5 min after glucose addition by the induction of the stringent response. A mutation in the relA gene abolished stringent control during the recovery and significantly prolonged the lag phase, before the starved cells regrew, after the addition of a single source of carbon. However, both the wild-type and the relA cells regrew without a significant lag phase when given glucose supplemented with amino acids. On the basis of these results, it is suggested that carbon-starved cells are deficient in amino acid biosynthesis and that ppGpp and the stringent response are involved in overcoming this deficiency, presumably by depressing the synthesis of amino acid biosynthetic enzymes. Furthermore, the data suggest that the starved cells primarily are starved for energy, and evidence is presented that the step-up in the rate of protein synthesis after refeeding is partially dependent on de novo RNA synthesis.  相似文献   

18.
The mechanism of action of erythropoietin   总被引:8,自引:0,他引:8  
  相似文献   

19.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

20.
H J Seidel 《Blut》1976,32(4):257-268
Erythropoiesis in CBA mice was studied in Rauscher leukemia virus infected mice using the incorporation of 59Fe into spleen, bone marrow and peripheral blood. Beginning at day 4 an increased uptake into the spleen and a decrease in the bone marrow and the peripheral blood was observed. The increased uptake by the spleen was also found in plethoric mice. The erythropoietin responsive compartment was also enlarged in the spleen of these mice. The The dose-response-curve for erythropoietin was altered 4 days after infection, there was a higher background level of 59Fe incorporation and the response to low doses was better in infected animals. The reticulocytopenia which is usually seen in these mice, was overcome by administration of high doses of erythropoietin. It is concluded that the Rauscher virus acts in a similar manner to erythropoietin, but the erythropoiesis induced is ineffective since the cells do not mature. This maturation deficiency is influenced by administration of exogenous erythropoietin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号