共查询到20条相似文献,搜索用时 0 毫秒
1.
Succinate dehydrogenase activity was measured in rat pancreatic islet homogenates incubated in the presence of [1,4-14C]succinate, the reaction velocity being judged through the generation of 14CO2 in the auxiliary reactions catalysed by pig heart fumarase and chicken liver NADP-malate dehydrogenase. In the presence of 1·0 mM succinate, the reaction velocity averaged 5·53 ± 0·44 pmol min?1 μg?1 islet protein. The Km for succinate was close to 0·4 mM and the enzymic activity was restricted to mitochondria. These kinetic results indicate that, under the present experimental conditions, the activity of succinate dehydrogenase does not vastly exceed that of either NAD-isocitrate dehydrogenase or the 2-ketoglutarate dehydrogenase complex, at least when the latter enzymes are activated by ADP and/or Ca2+. Nevertheless, the activity of succinate dehydrogenase is sufficient to account for the increase in O2 uptake evoked in intact islets by the monomethyl ester of succinic acid. It could become a rate-limiting step of the Krebs cycle in models of B-cell dysfunction. 相似文献
2.
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates. 相似文献
3.
Fructose, like glucose, rapidly equilibrates across the plasma membrane of pancreatic islet cells, but is poorly metabolized and is a weak insulin secretagogue in rat pancreatic islets. A possible explanation for such a situation was sought by investigating the modality of fructose phosphorylation in islet homogenates. Several findings indicated that the phosphorylation of fructose is catalyzed by hexokinase, but not fructokinase. First, at variance with the situation found in liver homogenates, the phosphorylation of fructose in the islet homogenate was unaffected by K+ and inhibited by glucose, mannose, glucose 6-phosphate or glucose 1,6-bisphosphate. Second, the Km for fructose was much higher in islets than in liver. Third, in islet homogenates the Km and Vmax for fructose were much higher than those for glucose or mannose phosphorylation, at low aldohexose concentrations, in good agreement with the properties of purified hexokinase. In intact islets fructose augmented the islet content in glucose 6-phosphate sufficiently to cause marked inhibition of its own rate of phosphorylation. These findings may account, in part at least, for the low rate of fructose utilization by rat pancreatic islets. 相似文献
4.
When rat pancreatic islets were incubated in the presence of unlabelled D-glucose (16.7 mM) and 3HOH, the production of 3H-labelled material susceptible to be phosphorylated by yeast hexokinase and then detritiated by yeast phosphoglucoisomerase did not exceed 2.66 +/- 0.21 pmol/islet per 180 min, i.e. about 1% of the rate of exogenous D-[5-3H]glucose utilization. Such a material accounted for 43 +/- 4% of the total radioactivity, associated with tritiated hexose(s). It is proposed, therefore, that the futile cycling of D-glucose in the reactions catalyzed in the islet cells by the hexokinase isoenzymes and glucose-6-phosphatase represents a negligible fraction of the total rate of D-glucose phosphorylation. 相似文献
5.
D-Fructose (3.3 to 33.0 mmol/liter) caused a concentration-related increase in insulin output from rat islets exposed to D-glucose (3.3 to 7.0 mmol/liter), such an increase not being more marked in mouse islets. The fructose-induced increment in insulin release, relative to that evoked by D-glucose, was two times higher in islets exposed to D-glucose than in islets stimulated by D-mannose, 2-ketoisocaproate, or nonnutrient secretagogs. Likewise, the metabolism of D-fructose in islet cells was significantly different in the absence or presence of D-glucose. Thus, the ketose was largely channeled into the pentose phosphate pathway in glucose-deprived, but not so in glucose-stimulated, islets. In both glucose-deprived and glucose-stimulated islets, however, the magnitude of the secretory response to D-fructose was commensurate with the increase in ATP production attributable to its catabolism. These findings indicate that the metabolic fate of hexoses--and, hence, their insulinotropic capacity--is not ruled solely at the level of their phosphorylation. 相似文献
6.
Hexose metabolism in pancreatic islets: regulation of mitochondrial hexokinase binding 总被引:1,自引:0,他引:1
A major fraction of hexokinase was found to be bound, presumably to mitochondria, in both normal and tumoral rat pancreatic islet cells examined after either mechanical disruption or digitonin treatment. Spermidine enhanced the binding and glucose 6-phosphate caused the release of hexokinase to and from islet mitochondria, in a manner comparable to that seen in parotid or brain homogenates. In hepatocytes, some hexokinase, but no glucokinase, was found in the bound form. In islet cells, however, the pattern of glucokinase binding was similar to that of hexokinase. It is speculated that the preferential location of both hexokinase and glucokinase on mitochondria may favor the maintenance of a high cytosolic ATP content in islet cells. 相似文献
7.
Miguel-Angel Perales Abdullah Sener Willy J. Malaisse 《Molecular and cellular biochemistry》1991,101(1):67-71
Summary Glucose-6-phosphatase activity was measured in rat liver or pancreatic islet crude homogenates and microsomes. The data recorded in the liver were comparable to those reported in prior studies. However, in the islets, the hydrolysis of D-glucose 6-phosphate by disrupted microsomes represented, when expressed relative to the protein content, less than 2% of the value recorded in liver microsomes. Moreover, no phosphotransferase activity was detected in the islets. These findings impose reservation on both the presence of glucose-6-phosphatase in rat islets and its participation to stimulus-secretion coupling. 相似文献
8.
Hexose metabolism in pancreatic islets. Feedback control of D-glucose oxidation by functional events 总被引:1,自引:0,他引:1
A rise in extracellular D-glucose concentration in pancreatic islet cells causes a greater relative increase in the oxidation of pyruvate and acetyl residues than in glycolysis. A possible explanation for such an unusual situation was sought in the present study. The preferential stimulation of mitochondrial oxidative events was found to display a sigmoidal dependency on hexose concentration, and an exponential time course during prolonged exposure of the islets to a high concentration of D-glucose. The preferential stimulation of mitochondrial oxidative events was abolished in islets incubated in the presence of cycloheximide and absence of Ca2+, in which case the oxidation of D-[6-14C]glucose was more severely inhibited than that of D-[3,4-14C]glucose. Likewise, the inhibitor of protein biosynthesis and the absence of Ca2+ affected the oxidation of L-[U-14C]leucine preferentially, relative to that of L-[1-14C]leucine, in islets exposed to a high, but not a low, concentration of the amino acid. These results demonstrate that in pancreatic islets it is possible to dissociate both glycolysis from mitochondrial oxidative events and the oxidation of acetyl residues from their generation rate. Moreover, the experimental data suggest that nutrient-responsive and ATP-requiring functional processes exert a feedback control on mitochondrial respiration in this fuel-sensor organ. 相似文献
9.
Rat islet homogenates display both phosphoglycerate 2,3-mutase and enolase activities. When phosphoglycerate 2,3-mutase is activated by 2,3-diphosphoglycerate, the reaction velocity becomes close to that of enolase. The islet content in 2,3-diphosphoglycerate is sufficiently high to allow virtually full activation of phosphoglycerate 2,3-mutase. 相似文献
10.
A rise in extracellular D-glucose concentration results in a preferential and Ca2(+)-dependent stimulation of mitochondrial oxidative events in pancreatic islet cells. The possible participation of Ca2(+)-dependent mitochondrial dehydrogenases, especially 2-ketoglutarate dehydrogenase, in such an unusual metabolic situation was explored in intact islets, islet homogenates and isolated islet mitochondria. In intact islets exposed to a high concentration of D-glucose, the removal of extracellular Ca2+ impaired D-[6-14C]glucose oxidation whilst failing to affect the cytosolic or mitochondrial ATP/ADP ratios. In islet homogenates, the activity of 2-ketoglutarate dehydrogenase displayed exquisite Ca2(+)-dependency, the presence of Ca2+ causing a 10-fold increase in affinity for 2-ketoglutarate. In intact islet mitochondria, the oxidation of 2-[1-14C]ketoglutarate also increased as a function of extramitochondrial Ca2+ availability. Moreover, prior stimulation of intact islets by D-glucose resulted in an increased capacity of mitochondria to oxidize 2-[1-14C]ketoglutarate. The absence of extracellular Ca2+ during the initial stimulation of intact islets impaired but did not entirely suppress such a memory phenomenon. It is proposed that the mitochondrial accumulation of Ca2+ in nutrient-stimulated islets indeed accounts, in part at least, for the preferential stimulation of mitochondrial oxidative events in this fuel-sensor organ. 相似文献
11.
The respective contribution of exogenous and intramitochondrially formed ATP to D-glucose phosphorylation by mitochondria-bound hexokinase was examined in both rat liver and pancreatic islet mitochondria by comparing the generation of D-glucose 6-[32P]phosphate from exogenous [gamma-32P]ATP to the total rate of D-[U-14C]glucose phosphorylation. In liver mitochondria, the fractional contribution of exogenous ATP to D-glucose phosphorylation ranged from 4 to 74%, depending on the availability of endogenous ATP formed by either oxidative phosphorylation or in the reaction catalyzed by adenylate kinase. Likewise, in islet mitochondria exposed to exogenous ATP but deprived of exogenous nutrient, about 60% of D-glucose phosphorylation was supported by mitochondrial ATP. Such a fractional contribution was further increased in the presence of ADP and succinate, and suppressed by mitochondrial poisons. It is concluded that, in islet like in liver mitochondria, mitochondrial ATP is used preferentially to exogenous ATP as a substrate for D-glucose phosphorylation by mitochondria-bound hexokinase. This may favour the maintenance of a high cytosolic ATP concentration in glucose-stimulated islet cells. 相似文献
12.
Remedios Ramirez Abdullah Sener Willy J. Malaisse 《Molecular and cellular biochemistry》1995,142(1):43-48
The mitochondrial NADH/NAD+ ratio for free nucleotides in rat pancreatic islets was judged from the cell content in L-glutamate and L-alanine, 2-ketoglutarate and pyruvate, and NH
4
+
. At a physiological concentration of D-glucose, such a ratio averaged 9.6±1.1%. A rise in hexose concentrations, above a threshold value in excess of 5.6 mM, caused a rapid, sustained and rapidly reversible decrease in the mitochondrial NADH/NAD+ ratio. It is speculated that in the process of glucose-stimulated insulin release, the latter change participates in the coupling between metabolic and secretory events by favouring both the activity of key mitochondrial dehydrogenases and the translocation of Ca2+ from the mitochondria into the cytosol. 相似文献
13.
The fate of the C1 and C2 of glucose-derived acetyl residues was examined in rat pancreatic islets. The production of 14CO2 from D-[2-14C]glucose exceeded that from D-[6-14C]glucose, in the same manner as the oxidation of [1-14C]acetate exceeded that of [2-14C]acetate. The difference in 14CO2 output from D-[2-14C]glucose and D-[6-14C]glucose was matched by complementary differences in the generation of 14C-labeled acidic metabolites and amino acids. Even the production of 14C-labeled L-lactate was somewhat higher in the case of D-[6-14C]glucose than D-[2-14C]glucose. The ratio between D-[2-14C]glucose and D-[6-14C]glucose oxidation progressively decreased at increasing concentrations of the hexose (2.8, 7.0, and 16.7 mM), was higher after 30 than 120 min incubation, and was decreased in the presence of a nonmetabolized analogue of L-leucine. These findings are consistent with the view that the difference between D-[6-14C]glucose and D-[2-14C]glucose oxidation is mainly attributable to the inflow into the Krebs cycle of unlabeled metabolites generated from endogenous nutrients, this being compensated by the exit of partially labeled metabolites from the same cycle. The present results also indicate that the oxidation of glucose-derived acetyl residues relative to their generation in the reaction catalyzed by pyruvate dehydrogenase is higher than that estimated from the ratio between D-[6-14C]glucose and D-[3,4-14C]glucose conversion to 14CO2. 相似文献
14.
Anaplerotic reactions leading to the de novo synthesis of fatty acids, were recently proposed to participate in the coupling of metabolic to secretory events in the process of glucose-stimulated insulin release. In an attempt to validate such a proposal, the effect of (-)-hydroxycitrate upon fatty acid synthesis and insulin release was investigated in glucose-stimulated rat pancreatic islets. The inhibitor of ATP citrate-lyase, when tested in the 1.0-2.0 mM range, failed to affect glucose-stimulated insulin release, but also failed to inhibit the incorporation of 14C-labelled acetyl residues derived from L-[U-14C]leucine into islet lipids. A partial inhibition of fatty acid labelling by 3H2O was only observed in islets incubated for 120 min in the presence of 5.0 mM (-)-hydroxycitrate and absence of CaCl2. These findings suggest that (-)-hydroxycitrate is not, under the present experimental conditions, a useful tool to abolish fatty acid synthesis in intact pancreatic islets. 相似文献
15.
Branched chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase activity in isolated rat pancreatic islets 总被引:1,自引:0,他引:1
Branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase in isolated rat pancreatic islets were shown to be regulated by a phosphorylation/dephosphorylation mechanism. Broad-specificity phosphoprotein phosphatase treatment stimulated and ATP addition inhibited their activities. The kinases responsible for inactivating these complexes were shown to be sensitive to inhibition by known inhibitors, alpha-chloroisocaproate and dichloroacetate. Total activity (nmol/min/islet / 37 degrees C) of branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase was 0.86 and 5.09, with a % active form (activity before phosphatase treatment divided by activity after phosphatase treatment X 100) of 36% and 94%, respectively. Incubation of intact isolated islets with alpha-chloroisocaproate affected neither insulin release nor flux through branched-chain alpha-ketoacid dehydrogenase. 相似文献
16.
Extracts of pancreatic islets stimulate the translocation of calcium from an aqueous into an organic immiscible phase. This ionophoretic activity, which is derived mainly from membrane-rich subcellular fractions, displays several features in common with that of A23187 in the same model. The phenomenon of calcium translocation caused by either the islet extract or the antibiotic ionophore represents a power function of the concentration of ionophoretic material; it is saturable at high calcium concentrations, affected by the concentration of Na+ and pH of the aqueous phase, increased at low temperature, and inhibited by suloctidil, the latter inhibitory effect being antagonized by calcium itself. These findings underline the potential significance of native ionophores in the regulation of calcium movements across membrane systems in the islet cells. 相似文献
17.
Hexose metabolism in pancreatic islets stimulation by D-glucose of [2-3H]glycerol detritiation 总被引:1,自引:0,他引:1
A Sener J Rasschaert D Z?hner W J Malaisse 《The International journal of biochemistry》1988,20(6):595-598
1. In pancreatic islets, a rise in glucose concentration is known to increase the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization. The opposite situation was found to prevail in parotid cells. 2. In rat pancreatic islets, D-glucose caused a concentration-related stimulation of 3H2O production from [2-3H]glycerol, but failed to affect 3H2O production from [1(3)-3H]glycerol or 14CO2 production from [U-14C]glycerol. At the low concentration used in most of these experiments (i.e. 1.0 mM), glycerol failed to affect D-[U-14C]glucose oxidation. 3. These findings suggest that the preferential stimulation by D-glucose of mitochondrial oxidative events in pancreatic islets represents an unusual situation in secretory cells and involves an accelerated circulation in the glycerol phosphate shuttle. 相似文献
18.
A method is proposed for the measurement of the flux through the glycerol phosphate shuttle in pancreatic islets. Such a flux is taken as the ratio between the production of 3HOH and the specific radioactivity of L-[2-3H]glycerophosphate in islets exposed to [2-3H]glycerol. D-Glucose and non-glucidic nutrient secretagogues, such as 2-ketoisocaproate and 2-aminobicyclo[2,2,1]heptane-2-carboxylate, stimulate, in a Ca(2+)-dependent manner, circulation in the glycerol phosphate shuttle. The shuttle flux is commensurate with the fraction of pyruvate generation which is not coupled with L-lactate production. These findings support the view that a rise in D-glucose concentration leads to activation of the FAD-linked mitochondrial glycerophosphate dehydrogenase through an increase in cytosolic Ca2+ concentration. 相似文献
19.
Characterization of succinate dehydrogenase and alpha-glycerophosphate dehydrogenase in pancreatic islets 总被引:1,自引:0,他引:1
Succinate dehydrogenase activities in homogenates of rat and ob/ob mouse pancreatic islets were only 13% of the activities in homogenates of liver and were also several times lower than in homogenates of pancreatic acinar tissue. This indicates that the content of mitochondria in pancreatic islet cells is very low. The very low activity of succinate dehydrogenase is in agreement with the low mitochondrial volume in the cytoplasmic ground substance of pancreatic islet cells as observed in morphometric studies. This may represent the poor equipment of pancreatic islet cells with electron transport chains and thus provide a regulatory role for the generation of reducing equivalents and chemical energy for the regulation of insulin secretion. The activities of succinate dehydrogenase in tissue homogenates of pancreatic islets, pancreatic acinar tissue, and liver were significantly inhibited by malonate and diazoxide but not by glucose, mannoheptulose, streptozotocin, or verapamil. Tolbutamide inhibited only pancreatic islet succinate dehydrogenase significantly, providing evidence for a different behavior of pancreatic islet cell mitochondria. Therefore diazoxide and tolbutamide may affect pancreatic islet function through their effects on succinate dehydrogenase activity. The activities of alpha-glycerophosphate dehydrogenase in homogenates of pancreatic islets and liver from rats and ob/ob mice were in the same range, while activities in homogenates of pancreatic acinar tissue were lower. None of the test agents affected alpha-glycerophosphate dehydrogenase activity. Thus the results provide no support for the recent contention that alpha-glycerophosphate dehydrogenase activity may be critical for the regulation of insulin secretion. 相似文献
20.
R. Gomis A. Sener F. Malaisse-Lagae W.J. Malaisse 《Biochimica et Biophysica Acta (BBA)/General Subjects》1983,760(3):384-388
1. Pancreatic islet homogenates catalyze, in a Ca2+-dependent fashion, the incorporation of [2,5-3H]histamine, [1,4-14C]putrescine, [1,2-3H]agmatine, [14C]methylamine, L-[U-14C]lysine in N,N-dimethylcasein. 2. Using [2,5-3H]histamine as the amine donor, the Km for Ca2+ and histamine amounts to 90μM and 0.7 mM, respectively. 3. The incorporation of [2,5-3H]histamine into N,N-dimethylcasein is inhibited by monodansylcadaverine, N-p-tosyl glycine, bacitracin and methylamine, the relative extent of inhibition depending on the respective concentrations of Ca2+, inhibitor and amine donor. 4. Bacitracin and methylamine, but not N-p-tosyl glycine, cause a dose-related inhibition of glucose-stimulated insulin release. 5. It is concluded that, in pancreatic islets, the Ca2+-responsive transglutaminase activity plays a critical role in the process of glucose-induced insulin release. 相似文献