首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of oryzalin (a specific inhibitor of tubulin polymerization in plant cells) on water retention by the leaves and roots of winter wheat (Triticum aestivum L.) seedlings was studied. The cultivars differing in their frost resistance were compared after their acclimation to low temperature (3°C for 3 or 7 days) and after treatment with ABA. In control untreated plants, oryzalin reduced the water-retaining capacity (WRC) of leaves and roots. Both hardening and ABA lowered the effect of the inhibitor on WRC in leaves, whereas their effects on water retention by roots were opposite, i.e., hardening weakened and ABA intensified the effect of oryzalin. Oryzalin-induced reduction of WRC decreased in the following sequence of cultivars: weakly frost resistant moderately frost resistant highly frost resistant. It was more pronounced in the leaves than in the roots, the latter being characterized by the lower WRC and lower frost resistance. After three-day-long hardening of plants, an additive effect of hypothermia and ABA on oryzalin-induced decrease in WRC of leaves and the lack of such effect in the roots were observed. The immunochemical analysis of the composition and content of cytoskeletal proteins with Western blotting showed that in the leaves the actin/tubulin ratio was higher than in the roots. The treatment of nonacclimated plants with ABA lowered the content of - and -tubulins and actin in roots but did not affect the level of actin in leaves. Hardening negated the effects of ABA on cytoskeletal proteins. Oryzalin produced the greatest inhibitory effect on WRC and an increase in frost resistance in ABA-treated plants in the experiments with leaves of the weakly frost resistant cultivar before and after hardening. Organ- and cultivar-specific and ABA-mediated dependence of WRC on cytoskeletal proteins and microtubules and microfilaments formed by them is supposed to result from their effect on the state of intracellular water and water permeability of the plasma membrane. In the course of cold acclimation of plants and upon their treatment with ABA, this dependence was more distinctly expressed in leaves than in roots, and especially in the plants of the weakly frost resistant cultivar.  相似文献   

2.
A depolymerizing effect of anti-microtubule drug oryzalin on the roots of three winter wheat (Triticum aestivum L.) cultivars contrasting in their frost-resistance was studied. The influence of plant cold acclimation (3°C, 7 days) and ABA treatment (30 μM) on oryzalin action was evaluated. Plant growing in the presence of 10 μM oryzalin under optimum temperature of 23°C resulted in the root-length decrease by 19–24% and root-apex swelling. All cells, especially in the root cortex, changed their radial dimensions. The cells acquired a rounded or irregular shape and increased in size. This indicates the loss of correct cell growth polarity. Most pronounced changes in the root apex diameter and most severe linear growth suppression were observed in the cultivar of moderate frost-resistance. The roots of this cultivar contained the highest amounts of actin and tubulins, as was evident from the immunoblot analysis. The effect of oryzalin on root growth and apex swelling was correlated with the content of actin in the roots of different wheat cultivars. Cold acclimation and exogenous ABA reduced (or prevented) oryzalin action on roots in a cultivar-specific manner. The conclusion was made that the bulk of the cytoskeletal net determined the efficiency of the cytoskeletal control of plant growth and morphogenesis. During autumn and winter periods, this is important for a better adaptation to temperature fluctuations of moderately frost-resistant plants, which are characterized by a high ecological plasticity.  相似文献   

3.
The effects of exogenous abscisic acid (ABA), low temperature, and seedling age on the content of tubulin, actin, and phosphorylated proteins and the structural organization of microtubules (MTs) in cells of different tissues and organs of winter wheat cultivars contrasting in cold hardiness were studied by immunocytochemical methods using monoclonal (against - and -tubulin and actin) and polyclonal (phosphothreonine) antibodies. The leaves and roots of five- and nine- day-old seedlings of three cultivars were characterized by unequal proportion of actin/tubulin proteins. ABA decreased the content of the cytoskeleton and the 60-kD phosphorylated proteins, thus promoting a decrease in the number of MTs and occurrence of a less branched network of weakly fluorescent tubulin components in the cells of the root differentiating zone (which is most responsible for the development of cold hardiness in wheat). Although the cold acclimation of plants (3°C, 7 days) did not change the level of tubulin and actin proteins, it evoked the spatial aggregation of MT, leading to formation of a dense network of tubulin cytoskeleton comprised of thick bundles of intensively fluorescent MTs. In the case of a combined action of the studied factors, low temperatures abolished the hormone effect described above, evoking an increase in the content of the cytoskeletal and 60-kD phosphorylated proteins and MT structures. We suggest that the ABA-induced decrease in the levels of proteins and MTs occurs at the initial stages of plant cold acclimation (3°C, 2-3 days). It may be the signal that triggers the processes of low-temperature adaptation. As the duration of cold acclimation increased (3°C, 7 days), the role of ABA in the formation of plant tolerance decreased. Apparently, in this case other hormone-independent mechanisms of frost hardiness development are triggered, in which the role of the cytoskeleton components and cytoskeleton-associated proteins increases.  相似文献   

4.
Randy Moore  James D. Smith 《Planta》1984,162(4):342-344
Ten-d-old seedlings of Zea mays L. cv. Tx 5855 treated with 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone (Fluridone) were analyzed for abscisic acid (ABA) content using high-performance liquid chromatography with an analysis sensitivity of 2.5 ng ABA g-1 fresh weight (FW). Seedlings were divided into three portions: leaves, detipped roots, and root tips (terminal 1.5 mm). Control plants (water treatment only; no Fluridone) were characterized by the following amounts of ABA: leaves, 0.114±0.024 (standard deviation) g ABA g-1 FW; detipped roots, 0.260±0.039±g ABA g-1 FW; root tips, no ABA detected. We did not detect any ABA in tissues of Fluridone-treated plants. Primary roots of treated and untreated seedlings were strongly graviresponsive, with no significant differences between the curvatures or the growth rates of primary roots of Fluridone-treated and control seedlings. These results indicate that 1) Fluridone completely inhibits ABA synthesis, and 2) ABA is not necessary for positive gravitropism by primary roots of Zea mays.Abbreviations ABA abscisic acid - Fluridone 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone - FW fresh weight - SD standard deviation  相似文献   

5.
Plants of Solanum tuberosum L. potato do not cold acclimate when exposed to low temperature such as 5°C, day/night. When ABA (45 M) was added to the culture medium, stem-cultured plantlets of S. tuberosum, cv. Red Pontiac, either grown at 20°C/15°C, day/night, or at 5°C, increased in cold hardiness from –2°C (killing temperature) to –4.5°C. The increase in cold hardiness could be inhibited in both temperature regimes if cycloheximide (70 M) was added to the culture medium at the inception of ABA treatment. Cycloheximide did not inhibit cold hardiness development, however, when it was added to the culture medium 3 days after ABA treatment.When pot-grown plants were foliar sprayed with mefluidide (50 M), ABA content increased from 10 nmol to 30 nmol g–1 dry weight and plants increased in cold hardiness from –2°C to about –3.5°C. The increases in free ABA and cold hardiness occurred only in plants grown at 20°C/15°C; neither ABA nor cold hardiness increased in plants grown at 5°C.The results suggest that an increase in ABA and a subsequent de novo synthesis of proteins are required for the development of cold hardiness in S. tuberosum regardless of temperature regime, and that the inability to synthesize ABA at low temperature, rather than protein synthesis, appears to be the reason why S. tuberosum does not cold acclimate.  相似文献   

6.
Cell suspension cultures were initiated from callus derived from xylem tissues of peach [Prunus persica (L.) Batsch]. Cold acclimation was induced (LT50 of-13°C) in cell suspensions at 3°C in the dark for 10 days. Freezing tolerance returned to the level of nonacclimated cells (LT50 of –4.5°C) when cold-acclimated cells were transferred to 24°C (in dark) for 3 days. Addition of 75 M abscisic acid (ABA) to the growth medium failed to induce cold acclimation after cells were cultured for 5 days at 24°C. Microvacuolation, cytoplasmic augmentation and disappearance of starch grains were observed in cells that were cold-acclimated by exposure to low temperature. Similar ultrastructural alterations were not observed in ABA-treated cells. Several qualitative and quantitative changes in proteins were noted during both cold acclimation and ABA treatment. Both the ultrastructural and protein changes observed during cold acclimation were reversed during deacclimation. The relationship of these changes to cold acclimation in peach cell-cultures is discussed.Abbreviations ABA abscisic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - Ms Murashige & Skoog - PMSF phenylmethylsulfonyl fluoride - LT50 or Freezing Tolerance temperature that resulted in 50% decrease in TTC reduction - TTC 2,3,5-triphenyltetrazolium chloride  相似文献   

7.
Effects of benzyladenine (BA) and abscisic acid (ABA) applied separately or simultaneously on parameters of gas exchange of Phaseolus vulgaris L. leaves were studied. In the first two experimental sets) 100 M ABA and 10 M BA were applied to plants sufficiently supplied with water. Spraying of leaves with ABA decreased stomatal conductance (g s) and in consequence transpiration rate (E) and net photosynthetic rate (P N) already 1 h after application, but 24 h after application the effect almost disappeared. 10 M BA slightly decreased gas exchange parameters, but in simultaneous application with ABA reversed the effect of ABA. Immersion of roots into the same solutions markedly decreased gas exchange parameters and 24 h after ABA application the stomata were completely closed. The effect of ABA was ameliorated by simultaneous BA application, particularly after 1-h treatment. In the third experimental set, plants were pre-treated by immersing roots into water, 1 M BA, or 100 M ABA for 24 h and then the halves of split root system were dipped into different combinations of 1 M BA, 100 M ABA, and water. In plants pre-treated with ABA all gas exchange parameters were small and they did not differ in plants treated with H2O+H2O, H2O+BA, or BA+BA. In plants pre-treated with BA or H2O, markedly lower values of P N were found when both halves of roots were immersed in ABA. Further, the effects of pre-treatment of plants with water, 1 M BA, 100 M ABA, or ABA+BA on the development of water stress induced by cessation of watering and on the recovery after rehydration were followed. ABA markedly decreased gas exchange parameters at the beginning of the experiment, but in its later phase the effect was compensated by delay in development of water stress. BA also delayed development of water stress and increased P N in water-stressed leaves. BA reversed the effect of ABA at mild water stress. Positive effects of BA and ABA pre-treatments were observed also after rehydration.  相似文献   

8.
Immunocytochemical study of the basic characteristics of the tubulin and actin cytoskeleton (total content, orientation, structure, and stability) was performed for various root zones of the seedlings of winter wheat cultivars contrasting in their freezing tolerance. Plant cold hardening (3°C, 7 days) and ABA treatment (30 M, 3 days) increased the stability of tubulin microtubules (MT), that is, reduced the depolymerizing action of oryzalin in vivo. However, the mechanisms of hardening and ABA stabilizing action on the cytoskeleton were different: low temperature enhanced spatial MT aggregation and resulted in the formation of a dense network of thick MT bundles, whereas ABA reduced the content of tubulin components and induced microfilament (MF) depolymerization. Most pronounced temperature- and ABA-induced cytoskeleton changes were observed in the differentiation zone, which indicates an important role of this root zone in plant adaptation and development of root freezing tolerance. Low temperatures reduced the hormonal effect on the structural arrangement and stability of MT and MF in wheat cultivars of high and moderate freezing tolerance but increased hormonal effects in the slightly tolerant cultivar. MF depolymerization and an increase in the proportion of stable MT are supposed to be a necessary condition for seedling growth retardation after their treatment with ABA and for seedlings at the initial phase of their adaptation to low temperature. At the final phase of cold hardening, some growth acceleration is evidently determined by the accumulation of highly labile MT and greater actin polymerization.  相似文献   

9.
Michael Luwe  Ulrich Heber 《Planta》1995,197(3):448-455
Spinach (Spinacia oleracea L.), broad bean (Vicia faba L.) and beech (Fagus sylvatica L.) plants were exposed to ozone at concentrations often measured in air during the summer months (120–300 g·m–3) and antioxidants were determined in the leaf tissue and in the aqueous phase of the cell wall, the apoplasm. Concentrations of both reduced ascorbate (AA) and its oxidized form, dehydroascorbate (DHA), showed the tendency to increase transiently in the apoplasm of spinach leaves 6–24 h after starting fumigation with ozone. In beech leaves, apoplasmic AA and DHA increased 3–7 d after beginning of treatment. At the very high concentration of 1600 g O3·m–3, an increase of apoplasmic AA was already measured after 1 d in beech leaves. Apparently, spinach and beech leaves respond to oxidative stress by increasing AA transport into the apoplasm and by accelerating DHA export. In contrast to these observations, DHA accumulated during 3 d of fumigation with only 120 g O3·m–3 in the apoplasm of broad bean leaves, while AA contents did not increase. After termination of fumigation, the extracellular redox state of ascorbate normalized within 1 d. Glutathione could not be detected in the apoplasm of any of the three leaf species. Intracellular AA changed its redox state in response to exposure to elevated concentrations of ozone. After 4–6 weeks of fumigation with 200–300 g O3·m–3 an increase of intracellular DHA was measured in beech leaves. At the same time, chlorophyll contents decreased and characteristic symptoms of ozone damage could be observed. However, no significant change in the redox state of apoplasmic ascorbate could be detected in beech leaves. Evidently, detoxification of ozone by apoplasmic AA was insufficient to protect the leaf tissue. Fumigation with a high ozone concentration (1600 g·m–3) caused an appreciable increase in the cellular contents of the oxidized forms of ascorbate and glutathione in beech leaves. Whereas in spinach leaves intracellular antioxidant contents and redox states were not altered during fumigation with 120–240 g O3·m–3, in broad bean leaves the intracellular DHA concentration increased and intracellular ascorbate became more oxidized after fumigation of the plants with 120 g O3·m–3. Apparently, broad bean leaves are more sensitive to ozone than beech and spinach leaves.Abbreviations AA ascorbate, reduced form - DHA ascorbate, oxidized form (dehydroascorbate) - FW fresh weight - GSH glutathione, reduced form - GSSG glutathione, oxidized form - IWF intercellular washing fluid - Vair intercellular air space volume of leaves - Vapo apoplasmic water volume of leaves This work was supported within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

10.
The effects of 0.2 M GA, 4.4 M benzyladenine (BA), and 5.7 M IAA on the contents of wheat germ agglutinin (WGA) and ABA in the roots of four-day-old wheat (Triticum aestivumL.) seedlings were studied. All phytohormones tested almost doubled the level of WGA. BA and IAA evidently stimulated the WGA accumulation by inducing ABA accumulation, whereas GA affected the level of the WGA in an ABA-independent way. The authors conclude that phytohormones control the WGA level via several pathways.  相似文献   

11.
The present work aims to establish a protocol for in vitro polyploidization using hypocotyl segments or cotyledonary nodes from in vitro grown annatto seedlings. The culture medium used to induce polyploidization was supplemented with MS salts, B5 vitamin complex, 100 mg l myo-inositol, 3% (w/v) sucrose, 2.28 M ZEA and 0.30 M IAA (hypocotyl segments) or 4.56 M ZEA (cotyledonary nodes), 0.8% (w/v) agar, and different concentrations of microtubule depolymerising agents, namely colchicine (0, 25, 250 and 1250 M) and oryzalin (0, 5, 15 and 30 M). To determine the optimum duration of either colchicine or oryzalin treatment for the induction of tetraploids, explants were treated for 15 or 30 days on regeneration medium. High frequencies of polyploidy in regenerated shoots from cotyledonary nodes were achieved in culture medium supplemented with 15 M oryzalin, for 15 days. Ploidy determination was based on chromosome counting in metaphasic cells from apical buds, and in the number of pairs of heterochromatic markers on the biggest chromosome, as visualized in interphasic nuclei, detection being easier in the latter. Among the characteristics evaluated, the measurements based on stomata length, width, area and frequency enabled greater discrimination between diploid and polyploid regenerated shoots.  相似文献   

12.
Effect of pre-treatments of 1 and 5 M epibrassinolide or homobrassinolide prior to water stress induction on changes in root nodulation and contents of endogenous abscisic acid (ABA) and cytokinin trans-zeatin riboside (ZR), and nitrogenase activity was investigated in the nodulated roots of Phaseolus vulgaris L. cv. Arka Suvidha. Brassinosteroids in the unstressed plants increased root nodulation, ZR content and nitrogenase activity, and also ameliorated their stress-induced decline in the nodulated roots. The ABA contents in the nodules of control or stressed plants were not altered by brassinosteroids treatment. There was an increase in pod yield by brassinosteroids treatment (5 M) in the irrigated control as well as stressed plants without influencing pod number or pod length. Among the brassinosteroids, epibrassinolide was relatively more effective.  相似文献   

13.
Summary Larvae of the beetleDendroides canadensis accumulate protein antifreezes during the winter.D. canadensis which were collected in the early fall, prior to the initiation of cold hardening processes, were treated with either 3.3 or 6.6 g juvenile hormone I topically in acetone and maintained for 21 days under normally non-inductive acclimation conditions (16 light/8 dark, 20 °C). Hormone treated animals significantly elevated the levels of antifreeze protein in their hemolymph compared to those of acetone treated and untreated controls or animals measured on the day of collection. D. canadensis treated with the anti-JH compound precocene II (P2) in acetone for 24 h at a concentration of 20 g/cm2 (a dose below LD50 for behavioral survival) and then maintained under acclimation conditions conducive to antifreeze protein production (8 light/16 dark, 20 °C) for 2 weeks failed to elevate levels of antifreeze. Acetone treated control animals accumulated a significant concentration of antifreeze protein.D. canadensis were also treated with 20 and 150 g/cm2 P2 (a dose below the LD50 for gross survival) followed by acclimation to short (8 h) photoperiod at 10 °C. All animals receiving the higher P2 dosage failed to elevate antifreezes while only 42.9% of the individuals treated with the lower dosage initiated antifreeze protein production. In contrast, over 80% of untreated and 70% of acetone treated controls responded to these inductive acclimation conditions by elevating antifreeze concentrations.These results indicate that juvenile hormone participates in the seasonal control of antifreeze protein production inDendroides canadensis. Since this species does not enter a diapause state prior to or throughout the winter this is the first evidence establishing a direct hormonal mechanism involved with insect cold hardiness.  相似文献   

14.
Summary The osmotic effect of Polyethylene glycol (PEG) has been shown to be sufficient to induce the germination of Pistacia vera L. pollen in liquid medium. The prehydration of the pollen in a saturated atmosphere for approximately 10 h was necessary to obtain maximum in vitro germination. Imbibition of the pollen in water resulted in the rapid leakage of solutes into the medium. These solutes consisted of approximately 50% carbohydrates, of which sucrose (0.65 mol/mg), glucose (0.77 mol/mg) and fructose (0.78 mol/mg) were the major sugars; the remaining 50% comprised proteins with the following major molecular weights 63 kDa, 60 kDa, 59 kDa, 40 kDa, 36 kDa, 35.5 kDa, 31 kDa, other organic matter and minerals.  相似文献   

15.
Allium wakegi plants exposed to long days (LD, 14 h-photoperiod) developed bulbs, which were dormant from the 30th to the 125th day of LD, but those grown under natural short days (SD) did not develop bulbs. The contents of abscisic acid (ABA) in both whole bulbs and buds of the bulbs increased in LD, reaching a maximum at the 60th day of LD and decreasing thereafter, but those in basal leaf sheaths (this part corresponds to a bulb after bulb development) and buds did not increase in SD. The ABA content was related to the depth of bulb dormancy. Application of 500 M ABA to bulbs for 24 h significantly delayed sprouting, but that of 5 or 50 M ABA had little or no effect. Application of 25 or 125 M fluridone to the soil just before exposure to LD bleached new expanding leaves and reduced bulb size, but had no effect on the development of bulb scales that characterize bulb formation. The bulbs formed under such conditions sprouted earlier than those of control plants. The levels of endogenous ABA in bulbs, buds of the bulbs, leaf blades, and roots were reduced by fluridone application. These results indicate that ABA plays an important role in bulb dormancy of Allium wakegi.  相似文献   

16.
Somatic embryos of Larix × leptoeuropaea were grown on modified MSG media with 60 M abscisic acid (ABA). These were compared to control embryos raised on the same medium without ABA. Transmission electron microscopy demonstrated that zonation of polyphenol production as well as presence of extracellular mucilage was markedly different in embryos raised with and without ABA. Idioblasts were found in subepidermal and pith regions of hypocotyls and among the subepidermal cells of cotyledons in embryos matured on ABA, but not in embryos matured without ABA. The embryonal root caps of ABA-treated embryos had substantial deposition of lipids and proteins in both the column and inner pericolumn regions, but not in the outer layer of the pericolumn. Control embryos showed no accumulation of proteins or lipids, but an increase in polyphenol accumulation, which had spread to the epidermal and sub-epidermal layers of the cotyledons and hypocotyl. Starch accumulation was similar over the course of development in embryos treated with or without ABA. Using gas chromatography-selected reaction monitoring mass spectrometry, it was shown that concentrations of ABA averaged 186 ± 17 g g–1 dry weight (DW) in embryos raised on medium supplemented with this plant growth regulator, versus an average concentration of 55 ± 19 g g–1 DW in embryos raised in the absence of ABA. No difference in ABA concentration was found between the root cap and the rest of ABA-treated embryos.  相似文献   

17.
Leaf pigments, such as chlorophyll and carotenoids, are essential plant molecules. They provide carbohydrates and energy during all plant life. Leaf pigments are also important parameters of decorative plants, such as floriculture items, cut foliage and flowers. Leaf yellowing is a form of senescence caused by an internal hormone imbalance, such as a lack of cytokinins. The aim of this study was to investigate the changes in total carotenoids and endogenous ABA in cut flower stock leaves during post-harvest life. The effect of pulse treatment with 5 or 10 M thidiazuron (TDZ), 150 mg l–1 8-hydroxyquinoline sulphate (8-HQS) and combinations of TDZ with 8-HQS on total carotenoids and ABA concentration was also investigated. Results showed that total carotenoids drastically decreased from 1548 g cm–2, until reaching 565 g cm–2 at the end of vase life. Endogenous ABA strongly increased at the same time, going from 167 ng g–1 DW at the beginning of the experiment to 1322 ng g–1 DW at the end of vase life. The TDZ inhibited carotenoid degradation, but did not affect the ABA concentration, while the 8-HQS did not prevent carotenoid degradation and the ABA concentration was only slightly affected. ABA seems to be a secondary senescence bio-product that may have a synergic effect with other senescence inducers dramatically accelerating leaf senescence.  相似文献   

18.
Shoot tips of the diploid rose Thérèse Bugnet were treated in vitro to oryzalin at concentrations of 5 and 15 M. Tetraploid shoots were obtained in highest frequencies (40%) after exposure to 5 M oryzalin for 14 days. Thin (1 mm) nodal sections were treated with 5 M oryzalin and the highest frequency of tetraploids (66%) was obtained after exposure for only 1 day. The shorter exposure times required to induce chromosome doubling in thin nodal sections is attributed to the more efficient delivery of oryzalin to the meristem. Tetraploids were obtained from four diploid roses and hexaploids from two triploid roses. Chromosome doubling was accompanied by increases in thickness and a darker green colouration of the leaves and, in all diploid to tetraploid and one triploid to hexaploid conversion, the breadth/length ratio of leaflets was significantly increased. Internodes were longer in tetraploids than diploids but significantly shorter in hexaploids than triploids. The number of petals per flower in the tetraploid form of Thérèse Bugnet was double that of the diploid. Significant increases in pollen viability accompanied chromosome doubling of all four diploids and one of the two triploids.Communicated by H. Nybom  相似文献   

19.
In winter wheat, the tubulin and 60 kDa-phosphorylated proteins/actin ratio is considerably higher in the roots than in the leaves. Differences in the content of the main cytoskeletal proteins were also found in the leaves of the different cultivars. It is suggested that the lower amount of the tubulin and 60 kDa-phosphorylated proteins and higher content of actin determine the greater tubulin cytoskeletal stability in the leaves and their higher frost resistance, as compared with the roots. Also, it is possible that the higher content of the tubulin and 60 kDa-phosphorylated proteins defines the lower microtubule (MT) stability in the leaves of the low frost resistant cultivar than in the leaves of the more frost resistant ones. In the roots and leaves of the low frost resistant cultivar, the low stability of the numerous tubulin structures is apparently one reason for the abscisic acid (ABA)-induced reduction of the cytoskeletal and 60 kDa-phosphorylated proteins in the cells. The cold acclimation compensated the ABA effect in the roots of the very frost resistant cultivar in the most extent. This suggests the existence of the different pathways in the increased plant cell frost resistance through the action of ABA and low temperature.  相似文献   

20.
In 10-d-old soybean seedlings, the growth of roots and shoots was significantly inhibited at 50 and 100 M and more Cd2+, respectively, and by 50 M or more Ni2+. Although total protein content of roots exposed to 200 M Cd2+ or Ni2+ was similarly decreased compared to the control, the activity of nitrate reductase was much more inhibited by Cd2+. Ni2+-treatment (200 M) induced an accumulation of all free amino acids in roots associated with a decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities reflecting the accumulation of both alanine and aspartic acid, respectively. Cd2+-treatment (200 M) decreased the amount of all free amino acids. In addition, cysteine which is the main amino acid consisting the phytochelatin complexes constituted about 17.5 % of total free amino acids. The activities of both ALT and AST in Cd2+-treated roots were higher than in Ni2+-treated roots suggesting higher conversion of alanine and aspartate to pyruvate and oxaloacetate. Primary leaves excised from either Cd2+ or Ni2+-treated seedlings showed similar pattern of enzyme activities as roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号