首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New active particulate polymeric vectors based on branched polyester copolymers of hydroxy-acid and allyl glycidyl ether were developed to target drugs to the inflammatory endothelial cell surface. The hydroxyl and carboxyl derivatives of these polymers allow grafting of ligand molecules on the polyester backbones at different densities. A known potent nonselective selectin ligand was selected and synthesized using a new scheme. This synthesis allowed the grafting of the ligand to the polyester polymers, preserving its binding activity as assessed by docking simulations. Selectin expression on human umbilical cord vascular endothelial cells (HUVEC) was induced with the pro-inflammatory bacterial lipopolysaccharide (LPS) or with the nonselective inhibitor of nitric oxide synthase L-NAME. Strong adhesion of the ligand decorated nanoparticles was evidenced in vitro on activated HUVEC. Binding of nanoparticles bearing ligand molecules could be efficiently inhibited by prior incubation of cells with free ligand, demonstrating that adhesion of the nanoparticles is mediated by specific interaction between the ligand and the selectin receptors. These nanoparticles could be used for specific drug delivery to the activated vascular endothelium, suggesting their application in the treatment of diseases with an inflammatory component such as rheumatoid arthritis and cancer.  相似文献   

2.
This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential.  相似文献   

3.
It is well recognized that there is an urgent need for non-toxic systemically applicable vectors for biologically active nucleotides to fully exploit the current potential of molecular medicine in gene therapy. Cell-specific targeting of non-viral lipid-based carriers for ODN and DNA is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. In this review we will address the most promising approaches to selective targeting of liposomal nucleic acid carriers in vivo. In addition, the routes of entry and intracellular processing of these carrier systems are discussed as well as physiological factors potentially interfering with the biological and/or therapeutic activity of their nucleotide pay-load.  相似文献   

4.
This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns.  相似文献   

5.
Polymeric micelles are ideal carriers for solubilization and targeting applications using hydrophobic drugs. Stability of colloidal aggregates upon injection into the bloodstream is mandatory to maintain the drugs' targeting potential and to influence pharmacokinetics. In this review we analyzed and discussed the most relevant stress mechanisms that polymeric micelles and related colloidal carriers encounter upon injection, including (1) dilution, (2) interactions with blood components, and (3) immunological responses of the body. In detail we analyzed the opsonin-dysopsonin hypothesis that points at a connection between a particles' protein-corona and its tissue accumulation by the enhanced permeability and retention (EPR) effect. In the established theory, size is seen as a necessary condition to reach nanoparticle accumulation in disease modified tissue. There is, however, mounting evidence of other sufficient conditions (e.g., particle charge, receptor recognition of proteins adsorbed onto particle surfaces) triggering nanoparticle extravasation by active mechanisms. In conclusion, the analyzed stress mechanisms are directly responsible for in vivo success or failure of the site-specific delivery with colloidal carrier systems.  相似文献   

6.
Anionic copolymer systems containing sulfated monomers have great potential for delivery of cationic therapeutics, but N-isopropylacrylamide (NIPAm) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) copolymer nanoparticles have seen limited characterization to date with regard to physical properties relevant to loading and release of therapeutics. Characterization of polymeric nanoparticles incorporating AMPS showed an increased size and decreased thermodynamic swelling ratios of AMPS containing particles as compared to NIPAm nanoparticles lacking AMPS. Particles with increasing AMPS addition showed an increased propensity for uniformity, intraparticle colloidal stability, and drug loading capacity. Peptide encapsulated in particles was shielded from peptide degradation in serum. Particles were shown not impede blood coagulation or to cause hemolysis. This study has demonstrated that AMPS incorporation into traditional NIPAm nanoparticles presents a tunable parameter for changing particle LCST, size, swelling ratio, ζ potential, and cationic peptide loading potential. This one-pot synthesis results in a thermosensitive anionic nanoparticle system that is a potentially useful platform to deliver cationic cell penetrating peptides.  相似文献   

7.
Rab6 regulates transport and targeting of exocytotic carriers   总被引:2,自引:0,他引:2  
Constitutive exocytosis delivers newly synthesized proteins, lipids, and other molecules from the Golgi apparatus to the cell surface. This process is mediated by vesicles, which bud off the trans-Golgi network, move along cytoskeletal filaments, and fuse with the plasma membrane. Here, we show that the small GTPase Rab6 marks exocytotic vesicles and, together with the microtubule plus-end-directed motor kinesin-1, stimulates their processive microtubule-based transport to the cell periphery. Furthermore, Rab6 directs targeting of secretory vesicles to plasma-membrane sites enriched in the cortical protein ELKS, a known Rab6 binding partner. Our data demonstrate that although Rab6 is not essential for secretion, it controls the organization of exocytosis within the cellular space.  相似文献   

8.
9.
Atkins RL  Wang D  Burke RD 《BioTechniques》2000,28(1):94-6, 98, 100
Avian embryos are a popular model for cell and developmental biologists. However, analysis of gene function in living embryos has been hampered by difficulties in targeting the expression of exogenous genes. We have developed a method for localized electroporation that overcomes some of the limitations of current techniques. We use a double-barreled suction electrode, backfilled with a solution containing a plasmid-encoding green fluorescent protein (GFP) and a neurophysiological stimulator to electroporate small populations of cells in living embryos. As many as 600 cells express GFP 24-48 h after electroporation. The number of cells that express GFP depends on the number of trains, the pulse frequency and the voltage. Surface epithelial cells and cells deep to the point of electroporation express GFP. No deformities result from electroporations, and neurons, neural crest, head mesenchyme, lens and otic placode cells have been transfected. This method overcomes some of the disadvantages of viral techniques, lipofection and in vivo electroporation. The method will be useful to biologists interested in tracing cell lineage or making genetic mosaic avian embryos.  相似文献   

10.
An eco-friendly green approach was proposed to synthesise stable, cytotoxic colloidal silver nanoparticles (AgNPs) using Momordica charantia (M. charantia) fruit extract. Bioinspired green method adopted for fabrication of AgNPs because of easy, fast, low-cost and benign bioprocess. Phytocomponents played the crucial role in capping, stabilisation and inherent cytotoxic potential of colloidal nanosilver. The physiochemical, crystalline, optical and morphological properties of AgNPs were characterized using UV-vis, FT-IR, XRD, SEM, TEM, EDX and AFM. FT-IR reveals the presence of carbonyl, methyl, polyphenol (flavonoid), primary and secondary amine (protein), carboxyl group, ester as major functional groups over the surface of nanomaterials. Mechanistic pathway for formation and stabilisation of colloidal nanosilver has been discussed. Average crystalline size of AgNPs was found to be 12.55?nm from XRD. TEM shows AgNPs nanosphere with size range 1–13.85?nm. Consistency in spherical morphology was also confirmed through Atomic Force Microscopy (AFM). AFM measurement provided image Rq value 3.62, image Ra 2.47, roughness Rmax 36.4?nm, skewness 1.99 and kurtosis 9.87. The SRB assay revealed substantial in vitro noticeable anti-cancer activity of colloidal nanosilver on A549 and HOP-62 human lung cancer cells in a dose dependent manner with IC50 value of 51.93?µg/ml and 76.92?µg/ml. In addition, M. charantia capped AgNPs were found to be more biocompatible in comparison to M. charantia FE. Our study demonstrated the integration of green chemistry principle in nanomaterials fabrication and focused on the potential use of M. charantia fruit extract as an efficient precursor for biocompatible AgNPs anodrug formulation with improved cytotoxic applications.  相似文献   

11.
Targeting the Prostate Specific Membrane Antigen (PSMA) is becoming increasingly more important for the management of prostate cancer patients at various stages. This review article describes selected radiolabelled PSMA inhibitors with optimized radiopharmaceutical properties for imaging and/or therapy.  相似文献   

12.
Bisphosphonates (BP's), biologically stable analogs of naturally occurring pyrophosphates, became the treatment of choice for pathologic conditions characterized by increased osteoclast-mediated bone resorption, namely Paget's disease, osteoporosis and tumor bone disease. Moreover, the clinical success of BP's is also associated with their use in (99m)Tc-based radiopharmaceuticals for bone imaging. In addition to the successful delivery of (99m)Tc (γ-emitter) to bone, BP's have also been used to deliver β(-)-particle emitting radiometals (e.g.(153)Sm, (186/188)Re) for bone-pain palliation. The main goal of this Review is to update the most recent research efforts toward the synthesis, characterization and biological evaluation of novel BP-containing radiometal complexes and radiohalogenated compounds for diagnostic or therapeutic purposes. The structure and in vivo properties of those compounds will be discussed and compared to the clinically available ones, namely in terms of image quality and therapeutic effect. We will also mention briefly the use of BP's as carriers of multimodal nuclear and optical imaging probes.  相似文献   

13.
Glioma is a huge threat for human being because it was hard to be completely removed owing to both the infiltrating growth of glioma cells and integrity of blood brain barrier. Thus effectively imaging the glioma cells may pave a way for surgical removing of glioma. In this study, a fluorescent probe, Cy3, was anchored onto the terminal of AS1411, a glioma cell targeting aptamer, and then TGN, a BBB targeting peptide, was conjugated with Cy3-AS1411 through a PEG linker. The production, named AsT, was characterized by gel electrophoresis, 1H NMR and FTIR. In vitro cellular uptake and glioma spheroid uptake demonstrated the AsT could not only be uptaken by both glioma and endothelial cells, but also penetrate through endothelial cell monolayer and uptake by glioma spheroids. In vivo, AsT could effectively target to glioma with high intensity. In conclusion, AsT could be used as an effective glioma imaging probe.  相似文献   

14.
Bovine serum albumin (BSA)-coated CdTe/ZnS quantum dots (BSA–QDs) were selected to conjugate with folic acid (FA), forming FA–BSA–QDs. This study aims to develop these small FA–BSA–QDs (less than 10 nm) for the diagnosis of cancers in which the FA receptor (FR) is overexpressed. The enhancement of cellular uptake in FR-positive human nasopharyngeal carcinoma cells (KB cells) for FA–BSA–QDs was found by means of confocal fluorescence microscopy under single-photon and two-photon excitation. The uptake enhancement for FA–BSA–QDs was further evaluated by flow-cytometric analysis in 104 KB cells, and was about 3 times higher than for BSA–QDs on average. The uptake enhancement was suppressed when KB cells had been pretreated with excess FA, reflecting that the enhancement was mediated by the association of FR at cell membranes with FA–BSA–QDs. When human embryonic kidney cells (293T) (FR-negative cells) and KB cells, respectively, were incubated with FA–BSA–QDs (1 μM) for 40 min, the FA–BSA–QD uptake by 293T cells was much weaker than that by KB cells, demonstrating that FA–BSA–QDs could undergo preferential binding on FR-positive cancer cells. These characteristics suggest that FA–BSA–QDs are potential candidates for cancer diagnosis.  相似文献   

15.
To accurately interpret the data from fluorescent proteins as reporters of gene activation within living cells, it is important to understand the kinetics of the degradation of the reporter proteins. We examined the degradation kinetics over a large number (>1,000) of single, living cells from a clonal population of NIH3T3 fibroblasts that were stably transfected with a destabilized, enhanced green fluorescent protein (eGFP) reporter driven by the tenascin-C promoter. Data collection and quantification of the fluorescence protein within a statistically significant number of individual cells over long times (14 h) by automated microscopy was facilitated by culturing cells on micropatterned arrays that confined their migration and allowed them to be segmented using phase contrast images. To measure GFP degradation rates unambiguously, protein synthesis was inhibited with cycloheximide. Results from automated live cell microscopy and image analysis indicated a wide range of cell-to-cell variability in the GFP fluorescence within individual cells. Degradation for this reporter was analyzed as a first order rate process with a degradation half-life of 2.8 h. We found that GFP degradation rates were independent of the initial intensity of GFP fluorescence within cells. This result indicates that higher GFP abundance in some cells is likely due to higher rates of gene expression, because it is not due to systematically lower rates of protein degradation. The approach described in this study will assist the quantification and understanding of gene activity within live cells using fluorescent protein reporters.  相似文献   

16.
A hybrid vector for ligand-directed tumor targeting and molecular imaging   总被引:11,自引:0,他引:11  
Merging tumor targeting and molecular-genetic imaging into an integrated platform is limited by lack of strategies to enable systemic yet ligand-directed delivery and imaging of specific transgenes. Many eukaryotic viruses serve for transgene delivery but require elimination of native tropism for mammalian cells; in contrast, prokaryotic viruses can be adapted to bind to mammalian receptors but are otherwise poor vehicles. Here we introduce a system containing cis-elements from adeno-associated virus (AAV) and single-stranded bacteriophage. Our AAV/phage (AAVP) prototype targets an integrin. We show that AAVP provides superior tumor transduction over phage and that incorporation of inverted terminal repeats is associated with improved fate of the delivered transgene. Moreover, we show that the temporal dynamics and spatial heterogeneity of gene expression mediated by targeted AAVP can be monitored by positron emission tomography. This new class of targeted hybrid viral particles will enable a wide range of applications in biology and medicine.  相似文献   

17.
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

18.
Sarojini H  Medepalli K  Terry DA  Alphenaar BW  Wang E 《BioTechniques》2007,43(2):213-4, 216-8, 220-1
Low-molecular-weight colloidal crystals with enhanced biocompatibility and ordered porous structure are used in drug-delivery systems. The objective of our study is to demonstrate the use of silica nanoscale colloid particles for localized recombinant DNA release. The colloids were coated with collagen-containing viral vector constructs of lentiviral green fluorescent protein (GFP), and solidified at 37 degrees C. The colloid-collagen-viral vector platform (CCP) was transferred to cell monolayer cultures of human lung fibroblasts. Results show specific infection of cells directly beneath the platform, as evidenced by positive GFP in their cytoplasm, while neighboring cells show no cytoplasmic GFP The infection of specific cells is probably due to the gradual release of viral particles from the collagen matrix by cell-secreted collagenase, which avoids overdosing the cells with viral particles, resulting from the cytopathic effect often seen with high-titer viral infection. Cells infected with the lentiviral-GFP or lentivirus alone, not incorporated into the colloid-collagen device, show caspase 3-associated apoptotic cell death. This suggests that colloidal crystal-coated collagen may be used as a powerful platform to deliver genes of choice to localized subgroups of specific cells of interest. This specificity in the delivery mode is beneficial for functional studies of gene-directed impact on a particular cell population of interest in a heterogeneous cell culture.  相似文献   

19.
To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ~3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.  相似文献   

20.
Methotrexate (MTX) coupled to mannosyl bovine serum albumin (BSA) was taken up efficiently through the mannosyl receptors present on macrophages. Binding experiments indicate that conjugation does not decrease the affinity of the neoglycoprotein for its cell surface receptor. The drug conjugate eliminated intracellular amastigotes of Leishmania donovani in mouse peritoneal macrophages about 100 times more efficiently than free drug on the basis of 50% inhibitory dose. Inhibitory effect of the conjugate was directly proportional to the density of sugar on the neoglycoprotein carrier. Colchicine and monensin, inhibitors of receptor-mediated endocytosis, can prevent the leishmanicidal effect of the conjugate. Antileishmanial effect of the conjugate can be competitively inhibited by mannose-BSA and mannan. In a murine model of experimental visceral leishmaniasis the drug conjugate reduced the spleen parasite burden by more than 85% in a 30-day model whereas the same concentration of free drug caused little effect. These results indicate that MTX-neoglycoprotein conjugate binds specifically to macrophages, and is internalized and degraded in lysosomes releasing the active drug to act on Leishmania parasites. These results also represent the potential for a general approach to intracellular targeting of clinical agents for macrophage-associated disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号