首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMMARY 1. Negative effects of zooplankton on the availability of phosphorus (P) for phytoplankton as a result of the retention of nutrients in zooplankton biomass and the sedimentation of exoskeletal remains after moulting, have been recently proposed. 2. In a mesocosm study, the relative importance of these mechanisms was tested for the freshwater cladoceran Daphnia hyalina×galeata. A total of 13 mesocosm bags was suspended in a mesotrophic German lake during summer 2000 and fertilised with inorganic P in order to obtain a total nitrogen to total P ratio closer to the Redfield ratio. D. hyalina×galeata was then added at a logarithmically scaled density gradient of up to 40 ind. L?1. Zooplankton densities, dissolved inorganic, particulate organic (seston <100 μm), as well as total nutrient concentrations were monitored. Additionally, nutrient concentrations of sediment water removed from the bottom of the mesocosm bags via a manual pump were determined. 3. Seston carbon (C), seston P and total P were significantly negatively correlated with Daphnia densities. The amount of particulate P (~5–6 μg P L?1) sequestered from the seston compartment by Daphnia corresponded roughly to the increase of zooplankton biomass (population growth). Soluble reactive phosphorous (SRP) was at all times high (~25–35 μg P L?1) and possibly unavailable to phytoplankton as a result of P adsorption to calcite during a calcite precipitation event (whiting). P concentrations determined in sediment water were generally <60 μg P m?2 and thus never exceeded 1% of the total amount of P bound in particulate matter of the overlying water column. 4. Seston C : P ratios followed a polynomial second‐order function: At Daphnia densities <40 ind. L?1 a positive linear relationship was evident, which is explained by the stronger reduction of P compared with C in seston, and transfer of seston P to zooplankton. Highest seston C : P ratios of ~300 : 1 were observed at Daphnia densities of ~30–50 ind. L?1, which is in agreement with proposed threshold values limiting Daphnia reproductive growth. At Daphnia densities >40–50 ind. L?1 C : P ratios were decreased because of the strong reduction of seston C at close to constantly low seston P‐values of ~3–4 μg P L?1. 5. At least for Daphnia, it may be concluded that – unlike population growth – the sedimentation of faecal pellets and carapaces after moulting seem negligible processes in pelagic phosphorus dynamics.  相似文献   

2.
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso‐ to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non‐algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.  相似文献   

3.
In an enclosure study in Schöhsee, a small mesotrophic lake in Northern Germany, the impact of copepods and daphniids on the seston community was studied. In general, these two guilds differ in their feeding behaviour. Copepods actively select their food, with a preference for larger particles, whereas most cladocerans are unselective filter-feeders. In this study we investigate how the impact of the two different grazers affects zooplankton growth. We combine results obtained in the laboratory with results measured in situ in the enclosures. Copepods and cladocerans were cultured on seston from enclosures that were inhabited by density gradients of copepods or daphniids. We observed that Daphnia grew faster on seston that was pre-handled by copepods than on seston that was pre-handled by daphniids, and that somatic growth decreased with increasing densities of daphniids in the enclosures. In contrast, we observed no differences in development rates for copepods grown on the different media. The population growth rates of Daphnia in the Daphnia treatments were determined in the enclosures. Growth differences in both somatic- and population growth of Daphnia were correlated to food quality aspects of the seston. In the laboratory we found that Daphnia growth was correlated with several fatty acids. The strongest regression was with the concentration of 20:43 (r 2= 0.37). This particular fatty acid also showed the highest correlation with growth after normalisation of the fatty acids to the carbon content of the enclosures (r 2= 0.33). On the other hand, in the enclosure the population growth correlated most to the particulate nitrogen content (r 2= 0.78) and only to the N:C ratio, when normalised to carbon (r 2= 0.51).  相似文献   

4.
1. We analysed the phospholipid fatty acid (PLFA) profiles of seston and of the dominant zooplankter, Daphnia longispina, through the open water period in a small, dystrophic lake to investigate seasonal variation in the diet of Daphnia. Phytoplankton, heterotrophic bacteria, green sulphur bacteria and methane‐oxidizing bacteria (MOB) were all present in the water column of the lake, and previous studies have indicated that vertically migrating Daphnia can exploit all these potential food sources. 2. For adult Daphnia, although there was some correspondence between the PLFA profile of Daphnia and the concurrent seston PLFA profile, strongest correlations were between the Daphnia PLFA profile and those of potential food sources determined 7 days earlier. This interval presumably reflects the time it takes for adult Daphnia to turn over their fatty acid pool. 3. A correlation between the concentration of polyunsaturated fatty acids (PUFAs) in the epi‐ and metalimnion and measured primary production indicated that, within the total PLFA fraction, PUFAs can be useful biomarkers for phytoplankton in food‐web studies. Algal PUFAs contributed appreciably to total PLFAs in adult Daphnia during spring and summer, but less so in autumn. 4. Daphnia in the lake actually reached their highest biomass in autumn, when methanotrophic activity was also highest, and the highest magnitude of MOB‐specific PLFAs was recorded in both adult and juvenile Daphnia. A strong relationship existed between δ13C values of Daphnia reported previously and the proportion of MOB‐specific PLFAs in Daphnia. Autumnal mixing evidently stimulates bacterial oxidation of methane from the hypolimnion, and exploitation of the methanotrophic bacteria sustains a high Daphnia population late in the season. 5. Our results show that the PLFA composition of freshwater zooplankton like Daphnia corresponds rather well to that of their in situ diet of phytoplankton and bacteria, with a lag period of around 1 week in the case of adult animals. The PLFA profile of seston revealed the dominant available food sources, and relating these to the Daphnia PLFA profile provided insights into seasonal changes in Daphnia diet.  相似文献   

5.
1. We studied the effects of fish water and temperature on mechanisms of competitive exclusion among two Daphnia species in flow‐through microcosms. The large‐bodied D. pulicaria outcompeted the medium sized D. galeata × hyalina in fish water, but not in the control treatment. Daphnia galeata × hyalina was competitively displaced 36 days earlier at 18 °C than at 12 °C. 2. It is likely that the high phosphorus content of fish water increased the nutritional value of detrital seston particles by stimulating bacterial growth. Daphnia pulicaria was presumably better able to use these as food and hence showed a more rapid somatic growth than its competitor. This led to very high density of D. pulicaria in fish water, but not in the controls. The elevated D. pulicaria density coincided with high mortality and reduced fecundity in D. galeata × hyalina, resulting in competitive displacement of the hybrid. 3. It is clear that the daphnids competed for a limiting resource, as grazing caused a strong decrease in their seston food concentration. However, interference may also have played a role, as earlier studies have shown larger Daphnia species to be dominant in this respect. The high density of large‐bodied D. pulicaria in fish water may have had an allelopathic effect on the hybrid. Our data are inconclusive with respect to whether the reached seston concentration was below the threshold resource level (R*) of the hybrid, where population growth rate and mortality exactly balance, as it would be set in the absence of interference, or whether interference actually raised the hybrid's R* to a value above this equilibrium particle concentration. 4. Our results do clearly show that fish‐released compounds mediated competitive exclusion among zooplankton species and that such displacement occurred at a greatly enhanced rate at an elevated temperature. Fish may thus not only structure zooplankton communities directly through size‐selective predation, but also indirectly through the compounds they release.  相似文献   

6.
The data set obtained in 19 experiments aimed at studying the growth of Daphnia of the longispina group on natural seston of the Bugach water reservoir (Krasnoyarsk) was used to analyze the relationship between the parameters of somatic and generative growth of the studied animals and the amount and quality of food. Depending on the quality of the seston, two models of the development of Daphnia were proposed. It was demonstrated that, despite the existing positive correlation between somatic and generative growth, a noticeable fraction of the variations of the specific rate of generative production is determined by external factors of the environment, such as the relative content of N and α-linolenic acid (N: C and ALA: C) in seston.  相似文献   

7.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

8.
Eutrophication and rising water temperature in freshwaters may increase the total production of a lake while simultaneously reducing the nutritional quality of food web components. We evaluated how cyanobacteria blooms, driven by agricultural eutrophication (in eutrophic Lake Köyliöjärvi) or global warming (in mesotrophic Lake Pyhäjärvi), influence the biomass and structure of phytoplankton, zooplankton, and fish communities. In terms of the nutritional value of food web components, we evaluated changes in the ω‐3 and ω‐6 polyunsaturated fatty acids (PUFA) of phytoplankton and consumers at different trophic levels. Meanwhile, the lakes did not differ in their biomasses of phytoplankton, zooplankton, and fish communities, lake trophic status greatly influenced the community structures. The eutrophic lake, with agricultural eutrophication, had cyanobacteria bloom throughout the summer months whereas cyanobacteria were abundant only occasionally in the mesotrophic lake, mainly in early summer. Phytoplankton community differences at genus level resulted in higher arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content of seston in the mesotrophic than in the eutrophic lake. This was also reflected in the EPA and DHA content of herbivorous zooplankton (Daphnia and Bosmina) despite more efficient trophic retention of these biomolecules in a eutrophic lake than in the mesotrophic lake zooplankton. Planktivorous juvenile fish (perch and roach) in a eutrophic lake overcame the lower availability of DHA in their prey by more efficient trophic retention and biosynthesis from the precursors. However, the most efficient trophic retention of DHA was found with benthivorous perch which prey contained only a low amount of DHA. Long‐term cyanobacterial blooming decreased the nutritional quality of piscivorous perch; however, the difference was much less than previously anticipated. Our result shows that long‐term cyanobacteria blooming impacts the structure of plankton and fish communities and lowers the nutritional quality of seston and zooplankton, which, however, is mitigated at upper trophic levels.  相似文献   

9.
1. Analyses of zooplankton fatty acid (FA) composition in laboratory experiments and samples collected from lakes in New Zealand spanning a wide gradient of productivity were used to assess the extent to which FAs might infer their diet. We used the cladocerans, Daphnia and Ceriodaphnia, and the calanoid copepod, Boeckella, as test organisms, and monocultures of cryptophytes, chlorophytes and cyanobacteria as food. Based on reproductive success, cryptophytes were the highest food quality, chlorophytes were intermediate and cyanobacteria the poorest. 2. Several FA groups were highly correlated between zooplankton and their diets. They were monounsaturated fatty acids (MUFAs), and ω3 and ω6 polyunsaturated fatty acids (PUFAs) for cladocerans, and saturated fatty acids (SAFAs) and ω3 PUFAs for copepods. Several FAs varied significantly less in the zooplankton than in their monoculture diets, e.g. MUFAs in Daphnia, and ω3 and ω6 PUFAs in Ceriodaphnia, despite clear dietary dependency for these FAs. 3. Zooplankton collected from lakes in New Zealand had more eicosapentaenoic acid (EPA) (Daphnia), more highly unsaturated ω3 and ω6 FAs (C20, C22; Daphnia, Ceriodaphnia, Boeckella) and less ω3 C18 PUFAs (Daphnia, Ceriodaphnia, Boeckella) and ω6 C18 PUFAs (Daphnia, Ceriodaphnia) than measured in the same species reared on phytoplankton in the laboratory. 4. Analyses of FA composition of seston and freshwater zooplankton globally showed that, in general, zooplankton had a significantly higher proportion of arachidonic acid and EPA than seston, and copepods also had a higher percentage of docosahexaenoic acid than seston. 5. These results suggest that zooplankton selectively incorporate the most physiologically important FAs. This could be a consequence of preferential assimilation, selective feeding on more nutritious cells or locating and feeding within higher food quality food patches.  相似文献   

10.
Seasonal dynamics in elemental composition [carbon (C), nitrogenand phosphorus (P)] of seston and zooplankton were studied overseveral years in three hypereutrophic Dutch lakes with persistentdominance and high biomass of cyanobacteria. In all three lakes,there was a strong pattern with decreased P-content and increasedC:P ratio in seston (<150 µm) coinciding with the increasein water temperature. The seston C:P ratios (at:at) were morethan doubled with the rising temperature, i.e. from 200 (at:at)in winter to 500 in summer. Sestonic C:P ratios increased overthe growing season, suggesting that seasonal dynamics amongautotrophs with high P-uptake in winter and support of subsequentphytoplankton growth by consumption of internal cellular P (P-quota)was the main cause of low sestonic P contents in late summer.This could, however, occur in concert with a physiologicallydriven decrease in cell-specific P at higher temperatures insummer. In contrast, the annual variation of C:P ratios of thezooplankton fraction was only 10% of that of seston. The variationsof C:P ratios of the zooplankton were, nevertheless, stronglycorrelated with those of seston. For most of the summer, sestonC:P ratios were far above the threshold ratio for P-limitationin Daphnia and other P-demanding species. This will pose furtherconstraints on growth performance of Daphnia in these lakes,thus adding to the fish predation pressure and the poor foodquality of cyanobacteria per se. The low grazing pressure causesa high biomass of low-quality autotrophs, promoting a stablestate with low trophic transfer efficiency.  相似文献   

11.
Specific growth rates (based on biomass increment in unit time) of Daphnia fed natural reservoir seston from a eutrophic Siberian reservoir were studied during four vegetation seasons in a laboratory flow-through system. Concentrations of particulate C, N, and P in reservoir seston <115 μm were comparatively high, 1.9, 0.2, and 0.05 mg l−1, respectively; maximum C:P ratio was 259 mol:mol. According to conventional thresholds, concentrations of elements and their stoichiometry did not limit the growth rate of Daphnia. Eicosapentaenoic acid (EPA) in seston significantly effected the growth rates at concentrations up to ∼13 μg l−1 (regression ANOVAR F-test value was 7.91), but not above this concentration. Thus, we consider this concentration of EPA in seston <115 μm to be the limiting concentration of EPA for the growth of Daphnia (longispina group), i.e., below this concentration EPA was the best single predictor of the growth of Daphnia.  相似文献   

12.
Acharya K  Kyle M  Elser JJ 《Oecologia》2004,138(3):333-340
Herbivores often encounter nutritional deficiencies in their diets because of low nutrient content of plant biomass. Consumption of various diet items with different nutrient contents can potentially alleviate these nutritional deficiencies. However, most laboratory studies and modeling of herbivorous animals have been done with diets in which all food has uniform nutrient content. It is not clear whether heterogeneous versus uniform food of equal overall nutrient content is of equivalent nutritional value. We tested the effects of dietary mixing on performance of a model organism, Daphnia. We fed two species of Daphnia ( D. galeata, D. pulicaria) with diets of equivalent bulk stoichiometric food quality (C:P) and studied whether they would produce equivalent performance when C:P was uniform among cells or when the diet involved a mixture of high C:P and low C:P cells. Daphnia were fed saturating and limiting concentrations of a uniform food of moderate C:P (UNI) or mixtures (MIX) of high C:P (LOP) and low C:P (HIP) algae prepared to match C:P in UNI. Daphnia were also fed HIP and LOP algae separately. Juvenile growth rate and adult fecundity were measured. D. galeata performance in UNI and MIX treatments did not differ, indicating that partitioning of C and P among particles did not affect dietary quality. Similarly, D. pulicarias performance was similar in the MIX and UNI treatments but only at low food abundance. In the high food treatment, both growth and reproduction were higher in the MIX treatment, indicating some benefit of a more heterogeneous diet. The mechanisms for this improvement are unclear. Also, food quality affected growth and reproduction even at low food levels for both D. pulicaria and D. galeata. Our results indicate that some species of zooplankton can benefit from stoichiometric heterogeneity on diet.  相似文献   

13.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

14.
1. A comparative study of fatty acid (FA) profiles in particulate matter (seston) and the key grazer Daphnia was performed in six high Arctic ponds (79°N, Svalbard). The ponds were all small and shallow, but followed a strong gradient with respect to nutrient content and optical properties. 2. A distinct locality‐specific pattern was detected by principal component analysis of FA profiles, where samples from each locality clustered both with regard to seston and Daphnia. Linear discriminant analysis using nine sestonic fatty acids as discriminant functions gave on average a correct prediction of the Daphnia lake membership in 47% of cases, with very high predictability in some lakes but poor predictability in others. 3. No significant correlation was detected between FA and nutrient concentration or levels of dissolved organic carbon. The major determinant of FA profiles as judged from a redundancy analysis was the taxonomic composition of phytoplankton communities, notably the biomass of Chlorophyceae. 4. The FA profiles of Daphnia were for some FAs strongly enriched relative to the seston, while diluted for others. Among the polyunsaturated fatty acids (PUFAs), a pronounced magnification of eicosapentaenoic acid (EPA, 20 : 5 n‐3), and to some extent 18 : 3 n‐3 and 20 : 4 n‐6 was found, while docosahexaenoic acid (DHA, 22 : 6 n‐3) contributed in general less to FAs in Daphnia than in seston and was hardly detectable in Daphnia from most localities. 5. The overall content of PUFAs in Daphnia was consistently high, close to 40% of total FA in all investigated localities, despite major differences in seston PUFA content. Daphnia thus acts as a regulator with regard to overall PUFAs, reflecting its physiological constraints and relatively fixed demands for PUFAs in general. The distinct locality‐specific profiles in Daphnia strongly suggest a kind of FA‐fingerprint, but our data do not allow strict statements on the use of specific FAs as trophic markers.  相似文献   

15.
1. According to stoichiometric theory, zooplankters have a species‐specific elemental composition. Daphniids have a relatively high phosphorus concentration in their tissues and copepods high nitrogen. Daphniids should, therefore, be more sensitive to phosphorus limitation and copepods more sensitive to nitrogen. A 2‐year study of a shallow marl lake in the west of Ireland investigated whether population fluctuations of the two dominant taxa, Daphnia spp. and the calanoid Eudiaptomus gracilis, were associated with the availability of phosphorus and nitrogen. 2. In accordance with stoichiometric predictions, Daphnia and Eudiaptomus reproduction had contrasting relationships with dietary phosphorus and nitrogen availability. Egg production by Daphnia was negatively associated with the ratio of dissolved inorganic nitrogen (DIN) : total phosphorus (TP) and the ratio of light to TP which was used as an indirect index for seston carbon (C) : phosphorus (P). Conversely calanoid egg production had a positive relationship with the DIN : TP ratio and was unrelated to the estimated C : P (light : TP) ratio. 3. Daphnia biomass was not, however, correlated with phosphorus availability, and neither was calanoid biomass correlated with nitrogen. The high ratio of DIN : TP when Daphnia dominated the zooplankton biomass and the low ratio when calanoids dominated, is consistent with Daphnia acting as a sink for phosphorus and calanoids as a sink for nitrogen and suggests consumer‐driven nutrient recycling.  相似文献   

16.
Here, we present data that for the first time suggests that the effects of atmospheric nitrogen (N) deposition on nutrient limitation extend into the food web. We used a novel and sensitive assay for an enzyme that is over‐expressed in animals growing under dietary phosphorus (P) deficiency (alkaline phosphatase activity, APA) to assess the nutritional status of major crustacean zooplankton taxa in lakes across a gradient of atmospheric N deposition in Norway. Lakes receiving high N deposition had suspended organic matter (seston) with significantly elevated carbon:P and N:P ratios, indicative of amplified phytoplankton P limitation. This P limitation appeared to be transferred up the food chain, as the cosmopolitan seston‐feeding zooplankton taxa Daphnia and Holopedium had significantly increased APA. These results indicate that N deposition can impair the efficiency of trophic interactions by accentuating stoichiometric food quality constraints in lake food webs.  相似文献   

17.
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

18.
The cladocerans Ceriodaphnia richardi, Daphnia ambigua, D. gessneri and Moina micrura were used to access food quality of Lake Monte Alegre’s seston. Experiments were carried out in summer and autumn as growth assays with lake seston only (control) and seston supplemented with phosphate, fatty acids or Synechococcus, and Scenedesmus. In summer, high C:P ratios in seston suggested strong phosphorus limitation, however, contrary to the expectations of stoichiometric theory, the addition of phosphate to seston did not improve cladoceran growth. Addition of PUFA increased growth rates and clutch size of D. gessneri, suggesting a possible deficiency in essential fatty acids in summer. Addition of Scenedesmus increased significantly growth rates of the cladocerans D. gessneri and C. cornuta, suggesting energy limitation in summer. In autumn, C:P ratios were lower than in summer, but still above the threshold ratio for Daphnia. At this time, addition of phosphate increased significantly growth rates of Daphnia suggesting strong P limitation, especially in D. gessneri. However, energy limitation was still important in autumn, as suggested by a further increase in growth rates in +Syn and +Sce treatments. Energy limitation was especially strong for Moina micrura, which is a fast-growing species, with high P content. Algal digestion resistance is a plausible hypothesis for energy limitation, since carbon concentrations in both seasons were above incipient limiting levels. These results show that the seston C:P ratio was not a consistent predictor of cladoceran P limitation and that factors other than P and energy limitation seem to be also important, such as PUFA or other biochemical factors. An erratum to this article is available at .  相似文献   

19.
Glaciers around the globe are melting rapidly, threatening the receiving environments of the world's fresh water reservoirs with significant changes. The meltwater, carried by rivers, contains large amounts of suspended sediment particles, producing longitudinal gradients in the receiving lakes. These gradients may result in changes in the light : nutrient ratio that affect grazer performance by altering elemental food quality. Thus, glacial melting may induce a shift in the phytoplankton carbon : nutrient ratio and hence influence the dominance of herbivorous zooplankton through stoichiometric mechanisms. To test this hypothesis, we combined field and experimental data, taking advantage of a natural light intensity gradient caused by glacial clay input in a deep oligotrophic Patagonian lake. Across this gradient, we evaluated the abundances of two consumer taxa with different phosphorus requirements, the copepod Boeckella gracilipes and the cladoceran Daphnia commutata, using a six‐station transect along the lake. We found significant differences in light : nutrient ratio and stoichiometric food quality of the seston, together with a switch from dominance of P‐rich Daphnia in low carbon : nutrient stations to dominance of low‐P copepods in high carbon : nutrient stations. The laboratory experiments confirmed that the difference in the carbon : nutrient ratio across the gradient is sufficient to impair Daphnia growth. The overall patterns are consistent with our prediction that shifts in the environmental light : nutrient ratio as a result of glacial melting would contribute to shifts in the dominance of stoichiometrically contrasting taxa in consumer guilds.  相似文献   

20.
Cascading Trophic Interactions in an Oligotrophic Species-poor Alpine Lake   总被引:1,自引:0,他引:1  
Non-native brook trout (Salvelinus fontinalis) were eradicated from alpine Bighorn Lake, Alberta, Canada, to test whether strong cascading trophic interactions (CTI) can occur in oligotrophic, high seston C:P, species-poor lakes. Fishless alpine Pipit Lake was used as a reference ecosystem. Bighorn Lake zooplankton biomass increased from 0.14:1 relative to Pipit Lake before fish removal began in 1997 to 0.6:1 afterwards due to an increase in the abundance of adult cyclopoid copepods beginning in 1997 and the reappearance of Daphnia middendorffiana in 1998. Following the reappearance of Daphnia, Bighorn Lake total phytoplankton biomass fell from 64:1 relative to Pipit Lake to 0.9:1. Over the same periods Bighorn Lake:Pipit Lake chlorophyll-a ratios declined from 2.4:1 to 1.6:1, although the decrease was not statistically significant. Mid-summer Secchi disc depth in Bighorn Lake increased from 3.1 m before manipulation to 9.2 m, the maximum depth of the lake, in 2001 and 2002. Increased transparency was most likely due to increased filtration of suspended inorganic particles from the water column by higher abundances of large zooplankton. Post-manipulation increases in dissolved inorganic nitrogen (DIN), DIN:total dissolved phosphorus (TDP) ratio and declines in TDP in Bighorn Lake were not attributable to ecosystem manipulation, similar changes were observed in reference Pipit Lake. We conclude that strong pelagic CTI, expressed as change in total phytoplankton biomass and largely mediated by Daphnia, can occur in oligotrophic, high seston C:P, species-poor ecosystems. However, strong CTI responses in phytoplankton biomass may lag trophic manipulation by several years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号