首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Culley TM  Grubb TC 《Molecular ecology》2003,12(11):2919-2930
The reproductive biology of a plant species is important in the response of populations to habitat fragmentation, especially if plant-pollinator interactions are disrupted. The genetic effects of forest fragmentation were examined in the common understorey herb Viola pubescens, a species that produces self-pollinated cleistogamous (CL) flowers and potentially outcrossing chasmogamous (CH) flowers. Using allozymes, we measured genetic variation in different sized populations. These were located in woodlots of various sizes (0.5-40.5 ha) and distances from one another (0.3-46 km) within the agricultural landscape of central Ohio in the Midwestern United States. Changes in forest cover of each woodlot within the past 180 years were determined from historical sources and aerial photographs. Woodlot and population sizes were significantly and positively correlated with measures of genetic variation (A, P, HO and HE), with variation highest in populations in the largest woodlot population and lowest in the smallest woodlot population. Most large woodlots resulted from fluctuations in forest cover over the past 60 years, while smaller fragments remained the same size. Overall, populations in Crawford County were genetically differentiated from one another (theta = 0.34), but there was no relationship between genetic and geographical distance. Preliminary evidence for a single year indicated a high rate of outcrossing in most populations. Despite the CH/CL reproductive advantage and apparent outcrossing, populations of V. pubescens in small woodlots remain susceptible to potentially detrimental effects of fragmentation such as genetic drift and reduced levels of genetic variation.  相似文献   

2.
Bellamya aeruginosa is a widely distributed Chinese freshwater snail that is heavily harvested, and its natural habitats are under severe threat due to fragmentation and loss. We were interested whether the large geographic distances between populations and habitat fragmentation have led to population differentiation and reduced genetic diversity in the species. To estimate the genetic diversity and population structure of B. aeruginosa, 277 individuals from 12 populations throughout its distribution range across China were sampled: two populations were sampled from the Yellow River system, eight populations from the Yangtze River system, and two populations from isolated plateau lakes. We used seven microsatellite loci and mitochondrial cytochrome oxidase I sequences to estimate population genetic parameters and test for demographic fluctuations. Our results showed that (1) the genetic diversity of B. aeruginosa was high for both markers in most of the studied populations and effective population sizes appear to be large, (2) only very low and mostly nonsignificant levels of genetic differentiation existed among the 12 populations, gene flow was generally high, and (3) relatively weak geographic structure was detected despite large geographic distances between populations. Further, no isolation by linear or stream distance was found among populations within the Yangtze River system and no signs of population bottlenecks were detected. Gene flow occurred even between far distant populations, possibly as a result of passive dispersal during flooding events, zoochoric dispersal, and/or anthropogenic translocations explaining the lack of stronger differentiation across large geographic distances. The high genetic diversity of B. aeruginosa and the weak population differentiation are likely the results of strong gene flow facilitated by passive dispersal and large population sizes suggesting that the species currently is not of conservation concern.  相似文献   

3.
North American freshwater mussel species have experienced substantial range fragmentation and population reductions. These impacts have the potential to reduce genetic connectivity among populations and increase the risk of losing genetic diversity. Thirteen microsatellite loci and an 883 bp fragment of the mitochondrial ND1 gene were used to assess genetic diversity, population structure, contemporary migration rates, and population size changes across the range of the Sheepnose mussel (Plethobasus cyphyus). Population structure analyses reveal five populations, three in the Upper Mississippi River Basin and two in the Ohio River Basin. Sampling locations exhibit a high degree of genetic diversity and contemporary migration estimates indicate that migration within river basins is occurring, although at low rates, but there is no migration is occurring between the Ohio and Mississippi river basins. No evidence of bottlenecks was detected, and almost all locations exhibited the signature of population expansion. Our results indicate that although anthropogenic activity has altered the landscape across the range of the Sheepnose, these activities have yet to be reflected in losses of genetic diversity. Efforts to conserve Sheepnose populations should focus on maintaining existing habitats and fostering genetic connectivity between extant demes to conserve remaining genetic diversity for future viable populations.  相似文献   

4.
Several recent studies have shown that amphibian populations may exhibit high genetic subdivision in areas with recent fragmentation and urban development. Less is known about the potential for genetic differentiation in continuous habitats. We studied genetic differentiation of red-backed salamanders (Plethodon cinereus) across a 2-km transect through continuous forest in Virginia, USA. Mark-recapture studies suggest very little dispersal for this species, whereas homing experiments and post-Pleistocene range expansion both suggest greater dispersal abilities. We used six microsatellite loci to examine genetic population structure and differentiation between eight subpopulations of red-backed salamanders at distances from 200 m to 2 km. We also used several methods to extrapolate dispersal frequencies and test for sex-biased dispersal. We found small, but detectable differentiation among populations, even at distances as small as 200 m. Differentiation was closely correlated with distance and both Mantel tests and assignment tests were consistent with an isolation-by-distance model for the population. Extrapolations of intergenerational variance in spatial position (sigma(2)<15 m(2)) and pair-wise dispersal frequencies (4 Nm < 25 for plots separated by 300 m) both suggest limited gene flow. Additionally, tests for sex-biased dispersal imply that dispersal frequency is similarly low for both sexes. We suggest that these low levels of gene flow and the infrequent dispersal observed in mark-recapture studies may be reconciled with homing ability and range expansion if dispersing animals rarely succeed in breeding in saturated habitats, if dispersal is flexible depending on the availability of habitat, or if dispersal frequency varies across the geographic range of red-backed salamanders.  相似文献   

5.
Ligularia sibirica (L.) Cass. (Asteraceae) is a EU Habitats Directive Annex II plant species that has suffered a lot from human-caused major changes in quality and availability of habitats in Estonia. The aim of this study was to find out if the observed decline in population size is reflected in the amount of genetic variation and fertility in remnant populations of this species. AFLP technique was used for that purpose. Genetic diversity within populations was assessed as the percentage of polymorphic loci in a given population and average gene diversity over loci. The degree of genetic differentiation among populations and genetic differentiation between pairs of populations was estimated. The amount of viable seeds per flower stem was compared among populations and between years (2007 and 2008). Average genetic diversity over loci and proportion of polymorphic loci in L. sibirica populations were significantly correlated with population size, suggesting the action of genetic drift and/or inbreeding. No correlation was found between genetic and geographic distances. Natural barriers like forests may have been efficiently preventing seed migration even between geographically closer populations. Results of this study suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species.  相似文献   

6.
The basidiomycete Phlebia centrifuga is a wood-decay fungus characteristic for unmanaged old-growth forests of spruce, a habitat that has become increasingly fragmented due to forest management. The aim of this study was to investigate the genetic population structures of P. centrifuga in both continuous and fragmented habitats, and estimate the potential impact of fragmentation on the genetic diversity of the fungus. Three hundred fifteen single spore isolates (representing 47 spore families and 33 single isolates) from eight populations across northern Europe (Russia, Finland, and Sweden) were screened with seven microsatellite markers and arbitrary primed polymerase chain reaction with the M13 minisatellite. The two molecular methods generally gave the same pattern for the genetic population structure. There were no significant differences between the observed and the expected heterozygosities, and the inbreeding coefficient (FIS) did not indicate any inbreeding. The fixation index (FST) revealed a general pattern with little to moderate genetic differentiation for the majority of populations, while the southernmost Swedish population Norra Kvill was the only one showing high differentiation from about half of the other populations. Swedish population Fiby with the shortest distance to the continuous habitat was moderately differentiated from most of the others and to the largest extent differed from geographically closest population of Norra Kvill. The results indicate that the fragmentation of old-growth forest in Russia and Finland is more recent than the fragmentation in Sweden, and the genetic population structures of P. centrifuga in northern Europe might be related to differences in forest landscape dynamics between the two areas.  相似文献   

7.
Pleistocene glaciations often resulted in differentiation of taxa in southern European peninsulas, producing the high levels of endemism characteristic of these regions (e.g. the Iberian Peninsula). Despite their small ranges, endemic species often exhibit high levels of intraspecific differentiation as a result of a complex evolutionary history dominated by successive cycles of fragmentation, expansion and subsequent admixture of populations. Most evidence so far has come from the study of species with an Atlantic distribution in northwestern Iberia, and taxa restricted to Mediterranean‐type habitats remain poorly studied. The Iberian Midwife toad (Alytes cisternasii) is a morphologically conserved species endemic to southwestern and central Iberia and a typical inhabitant of Mediterranean habitats. Applying highly variable genetic markers from both mitochondrial and nuclear genomes to samples collected across the species’ range, we found evidence of high population subdivision within A. cisternasii. Mitochondrial haplotypes and microsatellites show geographically concordant patterns of genetic diversity, suggesting population fragmentation into several refugia during Pleistocene glaciations followed by subsequent events of geographical and demographic expansions with secondary contact. In addition, the absence of variation at the nuclear β‐fibint7 and Ppp3caint4 gene fragments suggests that populations of A. cisternasii have been recurrently affected by episodes of extinction and recolonization, and that documented patterns of population subdivision are the outcome of recent and multiple refugia. We discuss the evolutionary history of the species with particular interest in the increasing relevance of Mediterranean refugia for the survival of genetically differentiated populations during the Pleistocene glaciations as revealed by studies in co‐distributed taxa.  相似文献   

8.
It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67?km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.  相似文献   

9.
Anopheles gambiae sensu stricto is a principal vector of malaria through much of sub-Saharan Africa, where this disease is a major cause of morbidity and mortality in human populations. Accordingly, population sizes and gene flow in this species have received special attention, as these parameters are important in attempts to control malaria by impacting its mosquito vector. Past measures of genetic differentiation have sometimes yielded conflicting results, in some cases suggesting that gene flow is extensive over vast distances (6000 km) and is disrupted only by major geological disturbances and/or barriers. Using microsatellite DNA loci from populations in Mali, West Africa, we measured genetic differentiation over uniform habitats favorable to the species across distances ranging from 62 to 536 km. Gene flow was strongly correlated with distance (r(2) = 0.77), with no major differences among chromosomes. We conclude that in this part of Africa, at least, genetic differentiation for microsatellite DNA loci is consistent with traditional models of isolation by distance.  相似文献   

10.
Habitat fragmentation has resulted in many species becoming geographically restricted, as dispersal among subsequent isolates becomes compromised. This study investigated the effects of historical fragmentation on the genetic diversity and differentiation of Australia's Bunya Pine (Araucaria bidwillii) using random amplified DNA (RAPD) markers. High diversity characterises all Bunya populations sampled, regardless of population size or degree of isolation, which may be either due to similar effective population size among populations, or the lagging effects of the detection of contemporary genetic signal in long-lived conifer species. Large genetic differentiation characterises the northern and southern populations, although all sampled populations are significantly differentiated from each other. The northern population, at Mt Lewis, is responsible for the majority of variation detected among populations, and as such represents a significant genetic reservoir. The conservation of the genotypes of the Mt Lewis population may be imperative for the future of the species, given predicted models of accelerated climate change over the coming decades.  相似文献   

11.
Habitat loss and fragmentation negatively impact the size and diversity of many natural populations. Woodland amphibians require connected aquatic and terrestrial habitats to complete their life cycle, and often rely on metapopulation structure for long‐term persistence. Wetland loss and deforestation fragment amphibian populations, which may result in population isolation and its negative effects. The aim of this research was to analyze the population genetic structure of small‐mouthed salamanders (Ambystoma texanum) in western Ohio, where agriculture is now the dominant land use. Salamander tail tissue was collected from eight breeding pools. Three pools occur in the same forest; the other five are in forest patches at distances ranging from 250 m to 20 km from one another. Eight microsatellite loci were amplified by PCR and genotyped for allele size. Observed heterozygosities were lower than expected in all sampled populations; the two most isolated sites (Ha1, Ha2) had the highest inbreeding coefficients. Ha2 also had the lowest mean number of alleles and was found to be genetically differentiated from populations to which our data analysis indicates it was historically connected by gene flow. The most distant site (Ha1) had the highest number of private alleles and showed genetic differentiation from other populations both historically and currently. Geographic distance between pools was strongly correlated with the number of private alleles in a population. The results suggest that population isolation results in decreased genetic diversity and that a breakdown of metapopulation structure due to landscape change may contribute to differentiation between once‐connected populations.  相似文献   

12.
13.
Rare plant species are vulnerable to genetic erosion and inbreeding associated with small population size and isolation due to increasing habitat fragmentation. The degree to which these problems undermine population viability remains debated. We explore genetic and reproductive processes in the critically endangered long-lived tropical tree Medusagyne oppositifolia, an endemic to the Seychelles with a naturally patchy distribution. This species is failing to recruit in three of its four populations. We evaluate whether recruitment failure is linked to genetic problems associated with fragmentation, and if genetic rescue can mitigate such problems. Medusagyne oppositifolia comprises 90 extant trees in four populations, with only the largest (78 trees) having successful recruitment. Using 10 microsatellite loci, we demonstrated that genetic diversity is high (H(E) : 0.48-0.63; H(O) : 0.56-0.78) in three populations, with only the smallest population having relatively low diversity (H(E) : 0.26 and H(O) : 0.30). All populations have unique alleles, high genetic differentiation, and significant within population structure. Pollen and seed dispersal distances were mostly less than 100 m. Individuals in small populations were more related than individuals in the large population, thus inbreeding might explain recruitment failure in small populations. Indeed, inter-population pollination crosses from the large donor population to a small recipient population resulted in higher reproductive success relative to within-population crosses. Our study highlights the importance of maintaining gene flow between populations even in species that have naturally patchy distributions. We demonstrate the potential for genetic and ecological rescue to support conservation of plant species with limited gene flow.  相似文献   

14.
Measures of genetic diversity (including heterozygosity), survival and developmental homeostasis were found to be significantly lower in small, urban populations of the Common Toad (Bufo bufo) than in larger, rural populations of the same region. The autecology and genetic analysis of this relatively sedentary species suggested that the causal mechanism was genetic drift, arising from barriers to migration created by urban development. The pre-metamorphic survival of larvae cultured in identical conditions increased positively with the mean number of alleles at a locus and the percentage of polymorphic loci. Observed heterozygosity in urban garden and rural populations was correlated inversely with the number of observed physical abnormalities (used as a measure of developmental homeostasis) in the developing tadpoles. Genetic distances between town sites of mean 2.2 km separation were significantly higher than those between rural sites of mean 37 km separation. Genetic data were based on allozyme analysis of 27 loci in 8 urban and 4 rural populations. A subset of these sites (3 urban, 2 rural) were also assessed at 3 minisatellite loci and a positive correlation found between the average number of alleles per locus detected by the two methods. Estimates of Nei's 1972 genetic distance, derived separately from the DNA and protein data, were not, however, correlated. The reduction in genetic diversity and fitness observed in these urban toads provides an example of the effect on population persistence that longer term depletion in numbers and habitat fragmentation can have in the wider environment.  相似文献   

15.

Background

Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity.

Results

Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability.

Conclusions

In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.  相似文献   

16.
Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.  相似文献   

17.
Conservation programs in urban ecosystems need to determine the genetic background in populations of urban dwellers. We examined the genetic diversity and structure of Pieris rapae and P. melete using AFLP markers, and compared them between species and between urban and rural environments. As a result: (i). in both species, there was no reduction in genetic diversity within urban populations by direct comparison of diversity measurements, although the analysis of molecular variance suggested significant reductions in the variance within seasonal subpopulations in urban populations; (ii). P. rapae retained greater genetic diversity within species and populations; (iii). populations of both species showed significant genetic differentiation, and P. melete was more strongly subdivided; (iv). in both species, geographically close populations did not cluster with one another in the upgma analysis; (v). there was no genetic isolation due to geographical distance in either species; (vi). the genetic composition of seasonal subpopulations differed in urban populations of both species, and the genetic distances among subpopulations were correlated with seasonal differences in P. rapae and with temporal differences in P. melete. These results indicate that the genetic diversity in urban populations of both species was reduced at times, but was maintained by dispersal from genetically differentiated populations. Differences in the ability and mode of dispersal in the two species may be reflected in the degree of population subdivision and patterns of seasonal change in the genetic composition.  相似文献   

18.
Genetic factors such as decreased genetic diversity and increased homozygosity can have detrimental effects on rare species, and may ultimately limit potential adaptation and exacerbate population declines. The Gulf and Atlantic Coastal Plain physiographic region has the second highest level of endemism in the continental USA, but habitat fragmentation and land use changes have resulted in catastrophic population declines for many species. Astragalus michauxii (Fabaceae) is an herbaceous plant endemic to the region that is considered vulnerable to extinction, with populations generally consisting of fewer than 20 individuals. We developed eight polymorphic microsatellites and genotyped 355 individuals from 24 populations. We characterized the population genetic diversity and structure, tested for evidence of past bottlenecks, and identified evidence of contemporary gene flow between populations. The mean ratios of the number of alleles to the allelic range (M ratio) across loci for A. michauxii populations were well below the threshold of 0.68 identified as indicative of a past genetic bottleneck. Genetic diversity estimates were similar across regions and populations, and comparable to other long-lived perennial species. Within-population genetic variation accounted for 92 % of the total genetic variation found in the species. Finally, there is evidence for contemporary gene flow among the populations in North Carolina. Although genetic factors can threaten rare species, maintaining habitats through prescribed burning, in concert with other interventions such as population augmentation or (re)introduction, are likely most critical to the long term survival of A. michauxii.  相似文献   

19.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

20.
The association between allelic diversity and ecogeographical variables was studied in natural populations of wild emmer wheat [ Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the tetraploid progenitor of cultivated wheat. Patterns of allelic diversity in 54 microsatellite loci were analyzed in a collection of 145 wild emmer wheat accessions representing 25 populations that were sampled across naturally occurring aridity gradient in Israel and surrounding regions. The obtained results revealed that 56% of the genetic variation resided among accessions within populations, while only 44% of the variation resided between populations. An unweighted pair-group method analysis (UPGMA) tree constructed based on the microsatellite allelic diversity divided the 25 populations into six major groups. Several groups were comprised of populations that were collected in ecologically similar but geographically remote habitats. Furthermore, genetic differentiation between populations was independent of the geographical distances. An interesting evolutionary phenomenon is highlighted by the unimodal relationship between allelic diversity and annual rainfall ( r  = 0.74, P  < 0.0002), indicating higher allelic diversity in populations originated from habitats with intermediate environmental stress (i.e. rainfall 350–550 mm year−1). These results show for the first time that the 'intermediate-disturbance hypothesis', explaining biological diversity at the ecosystem level, also dominates the genetic diversity within a single species, the lowest hierarchical element of the biological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号