首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioassay-guided fractionation of methanol extract of sea cucumber Actinopyga lecanora led to the isolation of a new triterpene glycoside (1), along with two known glycosides holothurin B (3) and holothurin A (4). The structure has been elucidated on the basis of extensive 2D NMR spectroscopic analysis. The saponin (3) showed in vitro antifungal activity against all the twenty fungal test isolates including ATCC strain and was found to be most effective against Trychophyton mentagrophytes and Sporothrix schenckii, MIC range of 1.56 microg/ml.  相似文献   

2.
SYNOPSIS. Crude holothurin from the Bahamian sea cucumber Actinopyga agassiz , inoculated intraperitoneally into rats with Trypanosoma lewisi infection, altered the host-parasite relationship. The effect was measured by a study of parasite population during infections. Rats treated with holothurin prior to and simultaneously with an infection of trypanosomes had lower parasitemias than controls. A higher level of parasitemia was observed in treated after infection with trypanosomes. Both dosage and timing appeared to have been important parameters of the observed effect. The reticuloendothelial system is suspected to play a role in these findings.  相似文献   

3.
The effect of holothurin (a marine biotoxin) on the resistance of mice to Trypanosoma musculi was measured by studying changes in the parasite population in vivo. Swiss Webster (SW), Beige (BG), and Black (BL) mice treated with holothurin prior to and simultaneously with infection of trypanosomes had lower parasitemias than controls. Higher levels of parasitemia were observed in mice treated after infection with trypanosomes. The timing of administration of holothurin appeared to be an important factor in the observed effect. The minor variations in the parasitemia seemed to be related to the mouse strain.  相似文献   

4.
A new sulfated holostane glycoside, leucospilotaside B ( 1 ), together with the two related structurally known compounds holothurin B2 ( 2 ) and holothurin B ( 3 ), was isolated from sea cucumber Holothuria leucospilota collected from the South China Sea. The structure of 1 was elucidated by spectral analysis (1H‐, 13C‐, and 2D‐NMR, ESI‐MS, and HR‐ESI‐MS) and chemical methods. The compounds 1 – 3 possess the same disaccharide moiety, but were different in the side chains of the triterpene aglycone. Compound 1 showed significant cytotoxicities against four human tumor cell lines, HL‐60, MOLT‐4, A‐549, and BEL‐7402.  相似文献   

5.
The effect of three sea cucumber saponins, echinoside A, bivittoside D and holothurin A, on multilamellar liposomes was investigated. An ideal osmotic behavior of liposomes was described as a linear relationship between the reciprocal 32s power of absorbance at 450 nm and the osmotic gradient across the membrane. Sea cucumber saponins at concentrations below critical micelle concentration (CMC) disturbed this linear relationship in liposomes composed of egg phosphatidylcholine, phosphatidic acid and cholesterol. Cholesterol-free liposomes were not susceptible to these saponins. Results of optical measurements were consistent with those of transmission electron microscopy, which showed saponin-induced changes in liposomal structure. The lytic activity of sea cucumber saponins on liposomes depended on their chemical structure.These results suggest that sea cucumber saponins as monomers can interact with liposomes and that cholesterol serve as a principal binding site for the sea cucumber saponins.  相似文献   

6.
Ferritin and colloidal gold were found to permeate human erythrocytes during rapid or gradual hypotonic hemolysis. Only hemolysed cells contained these particles; adjacent intact cells did not contain the tracers. Ferritin or gold added 3 min after the onset of hypotonic hemolysis did not permeate the ghost cells which had, therefore, become transiently permeable. By adding ferritin at various times after the onset of hemolysis, it was determined that for the majority of the cells the permeable state (or interval between the time of development and closure of membrane holes) existed only from about 15 to 25 sec after the onset of hemolysis. It was possible to fix the transient "holes" in the open position by adding glutaraldehyde only between 10 and 20 sec after the onset of hemolysis. The existence of such fixed holes was shown by the cell entry of ferritin and gold which were added to these prefixed cells. Membrane defects or discontinuities (of the order of 200–500 A wide) were observed only in prefixed cells which were permeated by ferritin subsequently added. Adjacent prefixed cells which did not become permeated by added ferritin did not reveal any membrane discontinuities. Glutaraldehyde does not per se induce or create such membrane defects since cells which had been fixed by glutaraldehyde before the 10-sec time point or after the 180-sec time point were never permeable to added ferritin, and the cell membranes never contained any defects. It was also observed that early in hemolysis (7–12 sec) a small bulge in one zone of the membrane often occurred. Ghost cells produced by holothurin A (a saponin) and fixed by glutaraldehyde became permeated by ferritin subsequently added, but no membrane discontinuities were seen. Ghosts produced by lysolecithin and fixed by glutaraldehyde also became permeated by subsequently added ferritin, and many membrane defects were seen here (about 300 A wide).  相似文献   

7.
Oligoribonucleotide derivatives containing Phe codon UUC along with a 3-flanking sense or stop codon with a perfluoroarylazido group at G or U were used to study the positioning of each nucleotide of the latter codon relative to the 18S rRNA in the A site of the 80S ribosome. To place the modified sense or stop codon in the A site, tRNAPhe cognate to UCC was bound in the P site. Regardless of the position in the sense or stop codon, the modified nucleotide crosslinked with invariant dinucleotide A1823/A1824 and nucleotide A1825 in helix 44 close to the 3 end of the 18S rRNA. Located in the second or third position of either codon, the modified G bound with invariant nucleotide G626, which is in the evolutionarily conserved 530 stem–loop fragment. The results were collated with the X-ray structure of the bacterial ribosome, and the template codon was assumed to be similarly arranged relative to the small-subunit rRNA in the ribosomal A site of various organisms.  相似文献   

8.
Low concentrations of calcium and magnesium ions have been shown to influence microtubule assembly in vitro. To test whether these cations also have an effect on microtubules in vivo, specimens of Actinosphaerium eichhorni were exposed to different concentrations of Ca++ and Mg++ and the divalent cation ionophore A23187. Experimental degradation and reformation of axopodia were studied by light and electron microscopy. In the presence of Ca++ and the ionophore axopodia gradually shorten, the rate of shortening depending on the concentrations of Ca++ and the ionophore used. Retraction of axopodia was observed with a concentration of Ca++ as low as 0.01 mM. After transfer to a Ca++-free solution containing EGTA, axopodia re-extend; the initial length is reached after about 2 h. Likewise, reformation of axopodia of cold-treated organisms is observed only in solutions of EGTA or Mg++, whereas it is completely inhibited in a Ca++ solution. Electron microscope studies demonstrate degradation of the axonemal microtubular array in organisms treated with Ca++ and A23187. No alteration was observed in organisms treated with Mg++ or EGTA plus ionophore. The results suggest that, in the presence of the ionophore, formation of axonemal microtubules can be regulated by varying the Ca++ concentration in the medium. Since A23187 tends to equilibrate the concentrations of divalent cations between external medium and cell interior, it is likely that microtubule formation invivo is influenced by micromolar concentrations of Ca++. These concentrations are low enough to be of physiological significance for a role in the regulation of microtubule assembly in vivo.  相似文献   

9.
Summary The deep-sea bioluminescent squid, Watasenia scintillans, has three visual pigments: The major one (A1 pigment) is based on retinal and has max = 484 nm, the second one (A2 pigment) is based on 3-dehydroretinal and has max = 500 nm, and the third one (A4 pigment) is based on 4-hydroxyretinal and has max = 470 nm. The distribution of these 3 visual pigments in the retina was studied by HPLC analysis of the retinals in retina slices obtained by microdissection. It was found that A1 pigment was not located in the specific region of the ventral retina receiving the down-welling light which contains very long photoreceptor cells, forming two strata. A2 and A4 pigment were found exclusively in the proximal pinkish stratum and in the distal yellowish stratum. The role of these pigments in the retina is hypothesized to involve spectral discrimination. The extraction and analysis of retinoids to determine the origin of 3-dehydroretinal and 4-hydroxyretinal in the mature squid showed only a trace amount of 4-hydroxyretinol in the eggs. Similar analysis of other cephalopods collected near Japan showed the absence of A2 or A4 pigment in their eyes.Abbreviations HPLC high-performance liquid chromatography - IS inner segment - OS outer segment  相似文献   

10.
Molybdate was shown to have complex effects in modulating the molecular organization of the constituents of the estrogen receptor (ER) system of porcine uterus. We showed previously the presence of one basic ER molecule (vero-ER) (sedimentation coefficient, 4.5S; Stokes radius, 44 A) and ER-binding factors (ERBFs) ["8S" ER-forming factor ("8S" ER-FF), (component A) X (component B)6; "6S" ER-FF, (component B)6; "5S" ER-FF, component A] in the porcine uterus [Fukai, F. & Murayama, A. (1981) J. Biochem. 95, 1697-1704]. Molybdate regulates the specific interaction of vero-ER with ERBFs in a complex way. The apparent Kd value (6.7 X 10(-10) M) of vero-ER with "8S" ER-FF in the presence of molybdate (30 mM) was decreased remarkably as compared with that (2.7 X 10(-9) M) in the absence of molybdate. In contrast, the apparent Kd value (3.7 X 10(-9) M) of vero-ER with "5S" ER-FF observed in the presence of molybdate (30 mM) was increased over ten-fold as compared with that in the absence of molybdate. Meanwhile, the affinity (Kd, 5 X 10(-9) M) of vero-ER for "6S" ER-FF was scarcely influenced by molybdate. These results reveal the mechanism by which molybdate selectively stabilizes "8S" ER. Molybdate further affected the molecular constitution of ERBFs. The dissociation of "8S" ER-FF into component A and component B, which takes place under hypertonic (0.4 M KCl) conditions at higher temperature (25 degrees C), was suppressed almost completely by molybdate (30 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A detailed study of the molecular mechanism of the translocation of estrogen receptor (ER) from the cytoplasm into the nucleus was undertaken in an in vitro system of porcine uterus. The capabilities of vero-ER . E (basic ER molecular bound with estradiol) (sedimentation coefficient 4.5S; Stokes radius 44 A) and the complexes ["5S" ER . E, (vero-ER . E) . (component A); "6S" ER . E, (vero-ER . E) . (component B)6; "8S" ER . E, (vero-ER . E) . (component B)6 . (component A)] with ER-binding factors (ERBFs) to translocate into the isolated nuclei were estimated by subtracting the amounts of ER adsorbed by the nuclear envelopes from those of ER bound to the whole nuclei. The results strongly supported our previous assumption that vero-ER . E translocates into the nuclei, and the complexes with ERBFs do not. The results suggested also that the binding site of vero-ER to ERBFs is required to be unoccupied in the process of the translocation of ER from the cytoplasm into the nucleus. The presence of a cytoplasmic factor (component C) which binds specifically with "5S" ER . E under low salt conditions was indicated. The complex, ("5S" ER . E) . (component C), was shown to possess relatively high affinity towards nuclear envelopes, but not to translocate into the nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To determine the significance of the gamma2 calcium-binding site in fibrin polymerization, we synthesized the fibrinogen variant, gammaD298,301A. We expected these two alanine substitutions to prevent calcium binding in the gamma2 site. We examined the influence of calcium on the polymerization of gammaD298,301A fibrinogen, evaluated its plasmin susceptibility, and solved 2.7 and 2.4 A crystal structures of the variant with the peptide ligands Gly-Pro-Arg-Pro-amide (GPRP) and Gly-His-Arg-Pro-amide (GHRP), respectively. We found that thrombin-catalyzed polymerization of gammaD298,301A fibrinogen was modestly impaired, whereas batroxobin-catalyzed polymerization was significantly impaired relative to normal fibrinogen. Notably, the influence of calcium on polymerization was the same for the variant and for normal fibrinogen. Fibrinogen gammaD298,301A was more susceptible to plasmin proteolysis in the presence of GPRP. This finding suggests structural changes in the near-by "a" polymerization site. Comparisons of the structures revealed minor conformational changes in the gamma294-301 loop that are likely responsible for the weakened "a" site. When considered altogether, the data suggest that the gamma2 calcium-binding site does not significantly modulate polymerization. We cannot, however, rule out the possibility that the weakened "a" polymerization site masks an important role for the gamma2 calcium-binding site in normal polymerization. Somewhat unexpectedly, the structure data showed that GPRP bound to the "b" site and induced the same local conformational changes as GHRP to this site. This structure shows that "A:b" interactions can occur and suggests that these may participate in normal polymerization.  相似文献   

13.
Homologies of the adductor mandibulae muscles in eight families of Tetraodontiformes were hypothesized from the branching patterns of ramus mandibularis trigeminus. Insertions of the muscles to the upper or lower jaw were weak indicators of homology, migrations of the sites occurring frequently in A1, A2, A2, and A3. In monacanthids, tetraodontids, and diodontids, A1 tended to be split into numerous subsections, whereas in aracanids and ostraciids, A3 was highly developed, comprising three or four subsections. In tetraodontids, A2 was found to be a composite of A1 subsection and A2. The methods of and limits to applying nerve branching patterns to muscle homology are discussed. A new naming system that reflects both muscle homologies and insertions is proposed.  相似文献   

14.
When the skin of the shoulder ("A" field) and lower back ("C" field) is irradiated through 10-cm-diameter fields with 250-kVp x-rays, having a HVL of 0.87 mm copper, a dose range is reached between approximately 1600 rads and 3000 rads in which a moist reaction is or is not formed. If a moist reaction is formed, it either heals completely, partially, or not at all. The evolution, time course, and dose dependence of the moist reaction that occurs following irradiation has been determined. The moist reaction is found at 17.5 +/- 0.6 days in the "A" field, and 20.8 +/-0.8 days in the "C" field. The reaction evolves to involve from 5 % to 100% of the field by 24.9 +/- 0.5 days in the "A" field and by 28.5 +/- 1.0 days in the "C" field. Healing is complete by 36.0 +/-1.0 days in the "A" field and by 38.0 +/- 1.3 days in the "C" field. The area of the field involved with a moist reaction at the time of maximal involvement is dose-dependent. The area of the field involved with a moist reaction at the time of complete healing is also dose-dependent. The dose at which 50 % of the fields were not healed was 2273 +/-103 rads in the "A" field, 2578 +/-141 rads in the "C" fields, and 2437 +/- 89 rads in the "A" and "C" fields. The values in the "C" field are significantly different from those in the "A" field except for the dose at which 50 % of the fields were not healed and the time at which the field was maximally healed.  相似文献   

15.
Monolayers of rac-1,2-didodecanoyl-sn-glycero-3-phosphoglycerol at an air-water interface were "vertically compressed" by substituting an alkylated glass plate for air while maintaining a constant surface pressure of 15 mN m-1. At this surface pressure the overlaying of the lipid film by the alkylated surface resulted in an average increase of 16 A2/molecule in the mean molecular area of those phospholipid molecules residing at the interface between water and the alkylated glass. Subsequently, the activities of phospholipases A1 and A2 toward the monolayers were measured both in the presence and in the absence of the support. While phospholipase A1 activity was increased 4-fold by the support, the activity of phospholipase A2 was reduced to 15% of the activity measured in the absence of the alkylated surface. These findings indicate that such a "vertical compression" of the monolayer is likely to induce a conformational change in the phospholipid molecules, which in turn would cause the above reciprocal changes in the activities of phospholipases A1 and A2. A molecular model accounting to these findings is presented.  相似文献   

16.
A study was made of variability of the sensitivity of peripheral blood lymphocytes from different donors to an antiproliferative action of cyclophosphamide and thiophosphamide. A similar degree of the sensitivity was revealed to alkylating agents differing in the action mode, with this degree being independent of the "stimulation index" magnitude.  相似文献   

17.
A kinetic study of ATP hydrolysis by soluble ATPase of chloroplasts (CF1) was made. At low concentrations of MgCl2 a linear increase of the reaction rate was observed during the increase in the ATP concentration up to 1 mM. At high concentrations of MgCl2 the dependence was of a more complicated nature. At MgCl2 concentrations lower than 0.1 mM the reaction approached second-order kinetics with respect to Mg2+; the increase in MgCl2 concentration resulted in a decrease of the reaction order. It is assumed that MgATP is the "true" substrate and MgADP the "true" inhibitor of the reaction. A reaction mechanism of ATP hydrolysis is postulated.  相似文献   

18.
Summary A remarkable humoral component of the oyster inflammatory response was elucidated by employing the tools of the determinative histochemist. The humoral component, characterized by the release of copper and a diazotized p-nitroaniline-positive material from an acidophilic granular amebocyte, was associated with the oyster inflammatory reaction. Grossly, this humoral response was associated with the appearance of an avocado or pea green coloration in the traumatized area. A second amebocytic cell type, termed the basophilic granular amebocyte, was observed swelling in traumatized areas and may have released an additional humoral component into injured regions. Copper released in response to trauma was bound to the cells in and around the wound site and appeared to be most avidly bound by the granules of the basophilic granular amebocytes. Once incorporated into the granular matrix of these amebocytes, copper appeared to stabilize and prevent the granule from swelling.A portion of this work was excerpted from a Ph.D. thesis submitted to the Graduate School, University of Washington, Seattle.This work was supported by Public Health Service Contract No. 5 to 1 ES 00038-02. The costs of publication were defrayed in part by HSAA Award No. RR 06138 and Tumor Biology Training Grant, NIH CA 05245.  相似文献   

19.
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.In 1898 Camillo Golgi was the first to visualize, describe, and ultimately name the Golgi complex. Using a histochemical impregnation method causing the reduction and deposition of silver, he defined the Golgi in neuronal cells as a reticular apparatus stained by the “black reaction” (Golgi 1898). In the 1950s, the first ultrastructural images of the Golgi were revealed using the then newly developed electron microscope (EM) (Dalton 1954; Farquhar and Rinehart 1954; Sjostrand and Hanzon 1954; Dalton and Felix 1956), reviewed by Farquhar and Palade (1981). In 1961, the thiamine pyrophosphatase reaction developed by Novikoff and Goldfischer allowed cytochemical labeling of Golgi membranes, which revealed the ubiquitous cellular distribution of this organelle (Novikoff and Goldfischer 1961). In the many years of ultrastructural research that have followed, the visualization of the Golgi has gone hand-in-hand with the developing EM techniques.The intriguing structural complexity of the Golgi has made it one of the most photographed organelles in the cell. However, a full understanding of Golgi architecture is hard to deduce from the ultrathin (70–100 nm) sections used in standard transmission EM preparations. Rambourg and Clermont (1974) were the first to investigate the Golgi in three dimensions (3D), using stereoscopy (Rambourg 1974). In this approach a “thick” (150–200 nm), EM section is photographed at two distinct angles, after which the pairs of photographs are viewed with a stereoscope. Over the years, stereoscopy was applied to a variety of cells and has greatly contributed to our current understanding of Golgi architecture (Lindsey and Ellisman 1985; Rambourg and Clermont 1990; Clermont et al. 1994; Clermont et al. 1995). An alternative approach to study 3D structure is serial sectioning, by which a series of adjacent (serial) thin sections are collected. The Golgi can be followed throughout these sections and be constructed into a 3D model (Beams and Kessel 1968; Dylewski et al. 1984; Rambourg and Clermont 1990). In the nineties, 3D-EM was boosted by the introduction of high-voltage, dual axis 3D electron tomography (Ladinsky et al. 1999; Koster and Klumperman 2003; Marsh 2005; Marsh 2007; Noske et al. 2008), which allows the analysis of sections of up to 3–4 µm with a 4–6 nm resolution in the z-axis. The sections are photographed in a tilt series of different angles, which are reconstructed into a 3D tomogram that allows one to “look beyond” a given structure and reveals how it relates to other cellular compartments.Membranes with a similar appearance can differ in protein content and function. These differences are revealed by protein localization techniques. Therefore, in addition to the “classical” EM techniques providing ultrastructural details, EM methods that determine protein localization within the context of the cellular morphology have been crucial to further our understanding on the functional organization of the Golgi. For example, by enzyme-activity-based cytochemical staining the cis-to-trans-polarity in the distribution of Golgi glycosylation enzymes was discovered, reviewed by Farquhar and Palade (1981), which was key to understanding the functional organization of the Golgi stack in protein and lipid glycosylation. With the development of immunoEM methods, using antibodies, the need for enzyme activity for protein localization was overcome. This paved the way for the localization of a wide variety of proteins, such as the cytoplasmic coat complexes associated with the Golgi (Rabouille and Klumperman 2005).A logical next step in EM-based imaging of the Golgi would be to combine protein localization with 3D imaging, but this is technically challenging. A number of protocols enabling protein localization in 3D have recently been described (Trucco et al. 2004; Grabenbauer et al. 2005; Gaietta et al. 2006; Zeuschner et al. 2006; Meiblitzer-Ruppitsch et al. 2008), but these have only been applied in a limited manner to Golgi studies. Another approach that holds great potential for Golgi research is correlative microscopy (CLEM). Live cell imaging of fluorescent proteins has revolutionized cell biology by the real time visualization of dynamic events. However, live cell imaging does not reveal membrane complexity. By CLEM, live cells are first viewed by light microscopy and then prepared for EM (Mironov et al. 2008; van Rijnsoever et al. 2008). When coupled with the recent introduction of super resolution light microscopy techniques for real time imaging, the combination with EM for direct correlation with ultrastructural resolution has great potential (Hell 2009; Lippincott-Schwartz and Manley 2009).The 100th anniversary of the discovery of the Golgi, in 1998, triggered a wave of reviews on this organelle, including those focusing on Golgi architecture (Rambourg 1997; Farquhar and Palade 1998). More recent reviews that describe Golgi structure in great detail are provided by Marsh (2005) and Hua (2009). In this article, the most recent insights in mammalian Golgi architecture as revealed by distinct EM approaches are integrated into a general concept.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号