首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A ubiquinone derivative, 3-chloro-5-hydroxyl-2-methyl-6-decyl- 1,4-benzoquinone (3-CHMDB), which shows different effects on the mitochondrial cytochrome b-c1 complex and chloroplast cytochrome b6-f complex, has been synthesized and characterized. When the cytochrome b-c1 complex is treated with varying concentrations of 3-CHMDB and assayed at constant substrate (Q2H2) concentration, a 50% inhibition is observed when 2 mol of 3-CHMDB per mol of enzyme are used. The degree of inhibition is dependent on the substrate concentration. When ubiquinol-cytochrome c reductase is treated with 2 mol of 3-CHMDB per mol of enzyme, less inhibition is observed with a lower substrate concentration, suggesting the possible existence of two forms of reductases: one with a high affinity for ubiquinone and another with a low affinity. 2-Chloro-5-hydroxyl-3-methyl-6-decyl-1,4-benzoquinone (2-CHMDB), an isomer of 3-CHMDB, shows much less inhibition of the mitochondrial cytochrome b-c1 complex, suggesting that the quinone binding site in this complex is highly specific. In contrast to the inhibition observed with the cytochrome b-c1 complex, 3-CHMDB causes no inhibition of the plastoquinol-plastocyanin reductase activity of chloroplast cytochrome b6-f complex, regardless of whether plastoquinol-2 or ubiquinol-2 is used as substrate. 3-CHMDB restores the dibromothymoquinone-altered EPR spectra of iron-sulfur protein in both complexes. In the case of the cytochrome b6-f complex, 3-CHMDB also partially restores the dibromothymoquinone-inhibited activity. Reduced form 3- or 2-CHMDB is oxidizable by the cytochrome b6-f complex, but not by the cytochrome b-c1 complex. These results suggest that the quinol oxidizing sites in the cytochrome b6-f complex may differ from those in the mitochondrial cytochrome b-c1 complex.  相似文献   

4.
The function, stability and mutual interactions of selected nuclear-encoded subunits of respiratory complexes III and IV were studied in the Trypanosoma brucei procyclics using RNA interference (RNAi). The growth rates and oxygen consumption of clonal cell lines of knock-downs for apocytochrome c1 (apoc1) and the Rieske Fe-S protein (Rieske) of complex III, and cytochrome c oxidase subunit 6 (cox6) of complex IV were markedly decreased after RNAi induction. Western analysis of mitochondrial lysates using specific antibodies confirmed complete elimination of the targeted proteins 4-6 days after induction. The Rieske protein was reduced in the apoc1 knock-down and vice versa, indicating a mutual interdependence of these components of complex III. However, another subunit of complex IV remained at the wild-type level in the cox6 knock-down. As revealed by two-dimensional blue native/SDS-PAGE electrophoresis, silencing of a single subunit resulted in the disruption of the respective complex, while the other complex remained unaffected. Membrane potential was reproducibly decreased in the knock-downs and the activities of complex III and/or IV, but not complex I, were drastically reduced, as measured by activity assays and histochemical staining. Using specific inhibitors, we have shown that in procyclics with depleted subunits of the respiratory complexes the flow of electrons was partially re-directed to the alternative oxidase. The apparent absence in T. brucei procyclics of a supercomplex composed of complexes I and III may represent an ancestral state of the respiratory chain.  相似文献   

5.
The catalytic role of subunit IV, the Mr 17,000 protein, in the chloroplast cytochrome b6-f complex was established through trypsinolysis of the complex under controlled conditions. When purified chloroplast cytochrome b6-f complex, 1 mg/ml, in 50 mM Tris-succinate buffer (pH 7.0) containing 1% sodium cholate and 10% glycerol is treated with 80 micrograms of trypsin at room temperature for various lengths of time, the activity of the cytochrome b6-f complex decreases as the incubation time increases. A maximal inactivation of 80% is reached at 7 min of incubation. The trypsin inactivation is accompanied by the destruction of the proton translocation activity of the complex. No alteration of absorption and EPR spectral properties was observed in the trypsin-inactivated complex. Subunit IV is the only subunit in the cytochrome b6-f complex that is digested by trypsin, and the degree of digestion correlates with the decrease of electron transfer activity. The binding of azido-Q to subunit IV of the complex decreases as the extent of inactivation of the cytochrome b6-f complex by trypsin increases. The residue molecular mass of trypsin cleaved subunit IV is about 14 kDa, suggesting that the cleavage site is at lysine 119 or arginine 125 or 126. When the thylakoid membrane was assayed for cytochrome b6-f complex activity, very little activity was observed; and the activity was not sensitive to trypsinolysis. Upon sonication, activity and sensitivity to trypsinolysis was greatly increased, suggesting that subunit IV protrudes from the lumen side of the membrane.  相似文献   

6.
Cytochrome b6-f complexes have been isolated from Chlamydomonas reinhardtii, Dunaliella saline and Scenedesmus obliquus. Each complex is essentially free of chlorophyll and carotenoids and contains cytochrome b6 and cytochrome f hemes in a 2:1 molar ratio. C. reinhardtii and S. obliquus complexes contain the Rieske iron-sulfur protein (present in approx 1:1 molar ratio to cytochrome f) and each catalyzes a DBMIB- and DNP-INT-sensitive electron transfer from duroquinol to spinach plastocyanin. Immunological assays using antibodies to the peptides from the spinach cytochrome complex show varying cross-reactivity patterns except for the complete absence of binding to the Rieske proteins in any of the three complexes, suggesting little structural similarity between the Rieske proteins of algae with those from higher plants. One complex (D. salina) has been uniformly labeled by growth in NaH14CO3 to determine stoichiometries of constituent polypeptide subunits. Results from these studies indicate that all functionally active cytochrome b6-f complexes contain four subunits which occur in equimolar amounts.  相似文献   

7.
The nearest-neighbor relationship among the constituent polypeptides of the isolated plastoquinol-plastocyanin oxidoreductase from spinach chloroplasts has been investigated. (1) The isolated plastoquinol-plastocyanin oxidoreductase (the b6/f complex) is treated with various concentrations of the cross-linker glutaraldehyde. The treated b6/f complexes are then analyzed by SDS-polyacrylamide gel electrophoresis coupled with the immunodecoration of cross-link products by specific antibodies for each of the four prominent constituent polypeptides. Cytochrome b6 is found to be most resistant to forming any intermolecular cross-link products. At low concentrations of glutaraldehyde, the 'Rieske' iron-sulfur (Fe-S) protein and subunit IV of the b6/f complex, however, appear to form cross-link products with a relative molecular weight of 35 000. Dimers of cytochrome f and cytochrome f/Rieske protein cross-link products can also be detected. (2) When a Rieske Fe-S protein-depleted b6/f complex is used in place of the control b6/f complex, cytochrome b6 is less resistant to intermolecular cross-linking, while subunit IV does not form any 35 kDa cross-link product, unlike the case in control b6/f complex. Subunit IV is concluded to be closely associated with the Rieske Fe-S protein. This provides evidence that subunit IV is a bona fide component of the cytochrome b6/f complex, although no function can yet be assigned to it. The results are discussed in relationship to the spatial and functional relationships among the components of the b6/f complex.  相似文献   

8.
9.
Three mutants of the alga Chlamydomonas reinhardtii affected in the nuclear PETC gene encoding the Rieske iron-sulfur protein 2Fe-2S subunit of the chloroplast cytochrome b(6)f complex have been characterized. One has a stable deletion that eliminates the protein; two others carry substitutions Y87D and W163R that result in low accumulation of the protein. Attenuated expression of the stromal protease ClpP increases accumulation and assembly into b(6)f complexes of the Y87D and W163R mutant Rieske proteins in quantities sufficient for analysis. Electron-transfer kinetics of these complexes were 10- to 20-fold slower than those for the wild type. The deletion mutant was used as a recipient for site-directed mutant petC alleles. Six glycine residues were replaced by alanine residues (6G6A) in the flexible hinge that is critical for domain movement; substitutions were created near the 2Fe-2S cluster (S128 and W163); and seven C-terminal residues were deleted (G171och). Although the 6G6A and G171och mutations affect highly conserved segments in the chloroplast Rieske protein, photosynthesis in the mutants was similar to that of the wild type. These results establish the basis for mutational analysis of the nuclear-encoded and chloroplast-targeted Rieske protein of photosynthesis.  相似文献   

10.
11.
12.
The cytochrome b-f complex is composed of four polypeptide subunits, three of which, cytochrome f, cytochrome b-563 and subunit IV, are encoded in chloroplast DNA and synthesised within the chloroplast, and the fourth, the Rieske FeS protein, is encoded in nuclear DNA and synthesised in the cytoplasm. The assembly of the cytochrome b-f complex therefore requires the interaction of subunits encoded by different genomes. A key role for the nuclear-encoded Rieske FeS protein in the assembly of the complex is suggested by a study of cytochrome b-f complex mutants. The assembly of individual subunits of the complex may be regulated by the availability of prosthetic groups. The genes for the chloroplast-encoded subunits and cDNA clones for the Rieske FeS protein have been isolated and characterised. Cytochrome f and the Rieske FeS protein are synthesised initially with N-terminal presequences required for their correct assembly within the chloroplast. The deduced amino acid sequences of the four subunits have been used to suggest models for the arrangement of the polypeptides in the thylakoid membrane.  相似文献   

13.
The orientation of specific polypeptides of the cytochrome b6-f complex with respect to the chloroplast stromal phase has been studied using trinitrobenzenesulfonate (TNBS) and pronase E as impermeant modifying reagents. Of the four polypeptides of the complex (33,23,20 and 17 kDa), only cytochrome f was labeled by 14C-TNBS in unfractionated membranes. However, to a varying degree, all of the constituent polypeptides were sensitive to pronase digestion and, in the case of cytochrome f, it was possible, by immunoblotting techniques to identify several degradation products. These results are discussed in relation to the organization of the cytochrome complex in thylakoid membranes and argue for an exposure to the stromal phase of all of the polypeptides, while functional considerations indicate that at least cytochrome f and the Rieske iron-sulfur protein have a possible transmembrane organization.  相似文献   

14.
The genes encoding cytochrome f (petA), cytochrome b(6) (petB), the Rieske FeS-protein (petC), and subunit IV (petD) of the cytochrome b(6)f complex from the thermophilic cyanobacterium Synechococcus elongatus were cloned and sequenced. Similar to other cyanobacteria, the structural genes are arranged in two short, single-copy operons, petC/petA and petB/petD, respectively. In addition, five open reading frames with homology to known orfs from the cyanobacterium Synechocystis PCC 6803 were identified in the immediate vicinity of these two operons.  相似文献   

15.
The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways.  相似文献   

16.
17.
R Malkin 《FEBS letters》1986,208(2):317-320
Stigmatellin and DNP-INT are effective inhibitors of the catalytic activity of the plastoquinol-plastocyanin oxidoreductase complex (cytochrome b6-f complex). Both inhibitors alter the EPR spectrum of the Rieske iron-sulfur center but do not produce band-shifts of cytochrome b-563. The midpoint redox potential of the Rieske center is unaffected by either inhibitor, although both alter the DBMIB-induced g-value shifts of the Rieske center. The results are considered in terms of binding domains for inhibitors in the cytochrome b6-f complex.  相似文献   

18.
The functional role and topographical orientation in the inner membrane of subunit VII, the ubiquinone-binding protein, of the cytochrome b-c1 complex of yeast mitochondria has been investigated. The apparent molecular weight of this subunit on sodium dodecyl sulfate-urea gels was calculated to be 15,500, while its amino acid composition was similar to that of the Q-binding proteins present in the cytochrome b-c1 complexes isolated from both beef heart and yeast mitochondria. The specific antibody obtained against subunit VII inhibited 30-47% of the ubiquinol-cytochrome c reductase activity in the isolated cytochrome b-c1 complex and in submitochondrial particles but had no effect on cytochrome c reductase activity in mitoplasts, mitochondria from which the outer membrane has been removed. Furthermore, the antibody against subunit VII strongly inhibited (74%) the reduction of cytochrome b by succinate in the presence of antimycin, an inhibitor of center i, but had no effect on cytochrome b reduction in the presence of myxothiazol, an inhibitor of center o. These results suggest that subunit VII, the Q-binding protein, is involved in electron transport at center o of the cytochrome b-c1 complex of the respiratory chain and that subunit VII is localized facing the matrix side of the inner mitochondrial membrane.  相似文献   

19.
The nucleotide sequence (25,320 base-pairs) of a part of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha was determined. This region encodes putative genes for four tRNAs, isoleucine tRNA(CAU), arginine tRNA(CCG), proline tRNA(UGG) and tryptophan tRNA(CCA); eight photosynthetic polypeptides, the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL), 51,000 Mr photosystem II chlorophyll alpha apoprotein (psbB), apocytochrome b-559 polypeptides (psbE and psbF), 10,000 Mr phosphoprotein (psbH), cytochrome f preprotein (petA), cytochrome b6 polypeptide (petB), and cytochrome b6/f complex subunit 4 polypeptide (petD); 13 ribosomal proteins (L2, L14, L16, L20, L22, L23, L33, S3, S8, S11, S12, S18 and S19); initiation factor 1 (infA); ribosome-associating polypeptide (secX); and alpha subunit of RNA polymerase (rpoA). Functionally related genes were located in several clusters in this region of the genome. There were two ribosomal protein gene clusters: rpl23-rpl2-rps19-rpl22-rps3-rpl16-+ ++rpl14-rps8-infA-secX-rps11-rpoA, with a gene arrangement similar to that of the Escherichia coli S10-spc-alpha operons, and the rps12'-rpl20-rps18-rpl33 cluster. There were gene clusters encoding photosynthesis components such as the psbB-psbH-petB-petD and the psbE-psbF clusters. Thirteen open reading frames, ranging in length from 31 to 434 amino acid residues, remain to be identified.  相似文献   

20.
The iron-sulfur protein subunit, known as the Rieske protein, is one of the central components of the cytochrome b(6)f complex residing in chloroplast and cyanobacterial thylakoid membranes. We have constructed plasmids for overexpression in Escherichia coli of full-length and truncated Rieske (PetC) proteins from the Spinacia oleracea fused to MalE. Overexpressed fusion proteins were predominantly found (from 55 to 70%) in cytoplasm in a soluble form. The single affinity chromatography step (amylose resine) was used to purify about 15mg of protein from 1 liter of E. coli culture. The isolated proteins were electrophoretically pure and could be used for further experiments. The NifS-like protein IscS from the cyanobacterium Synechocystis PCC 6803 mediates the incorporation of 2Fe-2S clusters into apoferredoxin and cyanobacterial Rieske apoprotein in vitro. Here, we used the recombinant IscS protein for the enzymatic reconstitution of the iron-sulfur cluster into full-length Rieske fusion and truncated Rieske fused proteins. Characterization by EPR spectroscopy of the reconstituted proteins demonstrated the presence of a 2Fe-2S cluster in both full-length and truncated Rieske fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号