首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1 Effective environmental management requires a sound understanding of the causal mechanisms underlying the relationship of species with their environment. Mechanistic explanations linking species and environment are ultimately based on species traits. Many tools for ecological assessment and biomonitoring lack such explanations. Elsewhere, we have defined life‐history strategies, based on the interrelations between species traits and their functional implications.
  • 2 This study tests the hypothesis that life‐history strategies represent different solutions to particular ecological problems, thus connecting species and their environment through species traits. Data on aquatic macroinvertebrates in a variety of waterbodies were analysed in terms of life‐history strategies. These waterbodies differed in environmental conditions and macroinvertebrate assemblages. Solutions to the ecological problems present in each type of water body were expected to be reflected in the abundance of (species exhibiting) different life‐history strategies.
  • 3 Results show clear differences in strategy composition between the different water types, which could be related to the prevailing environmental conditions through mechanistic explanations. For example, species with a long period of juvenile development and a synchronized emergence of short‐lived adults were most dominant in large mesotrophic waterbodies with stable and predictable environmental conditions. In contrast, species that have a rapid development and spread successive reproduction attempts over a longer time period were most abundant in waterbodies with fluctuating and less predictable environmental conditions.
  • 4 Differences in strategy composition provide insight into the prevailing environmental conditions related to temporal predictability, and habitat favourability, from the perspective of the species themselves. By reducing diverse species assemblages to a small number of strategies, representing easily interpretable relationships, this approach may be useful in environmental quality assessment programmes, including those required by the European Water Framework Directive. Based on mechanistic explanations, life‐history strategies may generate testable predictions and guide future research. Further research may focus on expanding life‐history strategies to include other species groups and ecosystems.
  相似文献   

2.
3.
4.
5.
  1. Plant tissues often lack essential nutritive elements and may contain a range of secondary toxic compounds. As nutritional imbalance in food intake may affect the performances of herbivores, the latter have evolved a variety of physiological mechanisms to cope with the challenges of digesting their plant‐based diet. Some of these strategies involve living in association with symbiotic microbes that promote the digestion and detoxification of plant compounds or supply their host with essential nutrients missing from the plant diet. In Lepidoptera, a growing body of evidence has, however, recently challenged the idea that herbivores are nutritionally dependent on their gut microbial community. It is suggested that many of the herbivorous Lepidopteran species may not host a resident microbial community, but rather a transient one, acquired from their environment and diet. Studies directly testing these hypotheses are however scarce and come from an even more limited number of species.
  2. By coupling comparative metabarcoding, immune gene expression, and metabolomics analyses with experimental manipulation of the gut microbial community of prediapause larvae of the Glanville fritillary butterfly (Melitaea cinxia, L.), we tested whether the gut microbial community supports early larval growth and survival, or modulates metabolism or immunity during early stages of development.
  3. We successfully altered this microbiota through antibiotic treatments and consecutively restored it through fecal transplants from conspecifics. Our study suggests that although the microbiota is involved in the up‐regulation of an antimicrobial peptide, it did not affect the life history traits or the metabolism of early instars larvae.
  4. This study confirms the poor impact of the microbiota on diverse life history traits of yet another Lepidoptera species. However, it also suggests that potential eco‐evolutionary host‐symbiont strategies that take place in the gut of herbivorous butterfly hosts might have been disregarded, particularly how the microbiota may affect the host immune system homeostasis.
  相似文献   

6.
7.
8.
  1. It is a long‐standing challenge to understand how changes in food resources impact consumer life history traits and, in turn, impact how organisms interact with their environment. To characterize food quality effects on life history, most studies follow organisms throughout their life cycle and quantify major life events, such as age at maturity or fecundity. From these studies, we know that food quality generally impacts body size, juvenile development, and life span. Importantly, throughout juvenile development, many organisms develop through several stages of growth that can have different interactions with their environment. For example, some parasitoids typically attack larger instars, whereas larval insect predators typically attack smaller instars. Interestingly, most studies lump all juvenile stages together, which ignores these ecological changes over juvenile development.
  2. We combine a cross‐sectional experimental approach with a stage‐structured population model to estimate instar‐specific vital rates in the bean weevil, Callosobruchus maculatus across a food quality gradient. We characterize food quality effects on the bean weevil's life history traits throughout its juvenile ontogeny to test how food quality impacts instar‐specific vital rates.
  3. Vital rates differed across food quality treatments within each instar; however, their effect differed with instar. Weevils consuming low‐quality food spent 38%, 37%, and 18% more time, and were 34%, 53%, and 63% smaller than weevils consuming high‐quality food in the second, third, and fourth instars, respectively. Overall, our results show that consuming poor food quality means slower growth, but that food quality effects on vital rates, growth and development are not equal across instars. Differences in life history traits over juvenile ontogeny in response to food quality may impact how organisms interact with their environment, including how susceptible they are to predation, parasitism, and their competitive ability.
  相似文献   

9.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

10.
  • Flowering and fruiting are key events in the life history of plants, and both are critical to their reproductive success. Besides the role of evolutionary history, plant reproductive phenology is regulated by abiotic factors and shaped by biotic interactions with pollinators and seed dispersers. In Melastomataceae, a dominant Neotropical family, the reproductive systems vary from allogamous with biotic pollination to apomictic, and seed dispersal varies from dry (self‐dispersed) to fleshy (animal‐dispersed) fruits. Such variety in reproductive strategies is likely to affect flowering and fruiting phenologies.
  • In this study, we described the reproductive phenology of 81 Melastomataceae species occurring in two biodiversity hotspots: the Atlantic rain forest and the campo rupestre. We aim to disentangle the role of abiotic and biotic factors defining flowering and fruiting times of Melastomataceae species, considering the contrasting breeding and seed dispersal systems, and their evolutionary history.
  • In both vegetation types, pollinator‐dependent species had higher flowering seasonality than pollinator‐independent ones. Flowering patterns presented phylogenetic signal regardless of vegetation type. Fruiting of fleshy‐fruited species was seasonal in campo rupestre but not in Atlantic rain forest; the fruiting of dry‐fruited species was also not seasonal in both vegetation types. Fruiting showed a low phylogenetic signal, probably because the influence of environment and dispersal agents on fruiting time is stronger than the phylogenetic affinity.
  • Considering these ecophylogenetic patterns, our results indicate that flowering may be shaped by the different reproductive strategies of Melastomataceae lineages, while fruiting patterns may be governed mainly by the seed dispersal strategy and flowering time, with less phylogenetic influence.
  相似文献   

11.
12.
13.
14.
  • One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self‐compatibility, and especially autonomous self‐pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation.
  • In a hand‐pollination experiment with 46 meadow plants from the ?elezné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life‐history traits.
  • We found a relatively discrete distribution of the studied species into four groups. Fully and partially self‐incompatible species formed the largest group, followed by self‐compatible non‐selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system.
  • Spontaneous selfing ability and self‐incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self‐compatible species and thus shape the evolution of mating systems.
  相似文献   

15.
16.
17.
18.
19.
20.
Classifying the biological traits of organisms can test conceptual frameworks of life‐history strategies and allow for predictions of how different species may respond to environmental disturbances. We apply a trait‐based classification approach to a complex and threatened group of species, scleractinian corals. Using hierarchical clustering and random forests analyses, we identify up to four life‐history strategies that appear globally consistent across 143 species of reef corals: competitive, weedy, stress‐tolerant and generalist taxa, which are primarily separated by colony morphology, growth rate and reproductive mode. Documented shifts towards stress‐tolerant, generalist and weedy species in coral reef communities are consistent with the expected responses of these life‐history strategies. Our quantitative trait‐based approach to classifying life‐history strategies is objective, applicable to any taxa and a powerful tool that can be used to evaluate theories of community ecology and predict the impact of environmental and anthropogenic stressors on species assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号