首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H2O2 dependent catalysis of cytochrome P-450 was compared with the catalytic mechanism of horse radish peroxidase, methemoglobin and iron protoporphyrin complexes. A relatively stable intermediate being comparable to compound I of horse radish peroxidase is formed in the case of iron porphyrin complexes, methemoglobin and probably cytochrome P-450. In the case of peroxidase compound II is the more stable intermediate. This could be the reason for the different catalytic properties of peroxidase on the one hand and iron porphyrin complexes, methemoglobin and cytochrome P-450 on the other hand.  相似文献   

2.
The interaction of cytochromes P-450 of the liver and olfactory epithelium of male hamsters with cumene hydroperoxide (CHP) has been characterized with regard to the ability of CHP to (1) support 7-ethoxycoumarin-O-de-ethylase (ECOD) activity, (2) support the oxidation of NNN'N'-tetramethyl-p-phenylenediamme (peroxidase activity) and (3) cause inactivation of cytochrome P-450. In the liver, CHP was found to support both ECOD and peroxidase activities while causing only minimal inactivation of cytochrome P-450. In contrast, in the olfactory epithelium CHP was virtually unable to support ECOD activity, peroxidase activity was 4-fold greater than in the liver, and extensive inactivation of cytochrome P-450 occurred. The reasons for these differences have been investigated with particular reference to the mode of cytochrome P-450-catalysed decomposition of CHP, that is, via homolytic or heterolytic cleavage of the hydroperoxide dioxygen bond. In both tissues, cumenol (2-phenylpropan-2-ol) was the major product of CHP decomposition detected. The radical scavenger nitrosobenzene inhibited cumenol formation by 84% in the olfactory epithelium, but by only 38% in the liver. This may indicate that dioxygen-bond scission occurs predominantly homolytically in the nasal tissue, whereas there is a balance between homolysis and heterolysis in the liver. It is suggested that the inability of CHP to support ECOD activity in the olfactory epithelium and the extensive inactivation of cytochrome P-450 that it causes both stem from decomposition of the hydroperoxide occurring homolytically rather than heterolytically in this tissue.  相似文献   

3.
An electrochemical system of cytochrome P-450 reduction in the presence of the water-soluble redox carrier methylviologen has been developed. In this system cytochrome P-450 effectuates a steady-state demethylation of dimethylaniline and hydroxylation of aniline. The results of control experiments suggest that the above reactions are mediated by cytochrome P-450. The effect of the peroxidase reaction is excluded by an addition of high concentrations of catalase to the incubation mixture. At the same time the hydroxylation of these substrates is accompanied by methylviologen demethylation.  相似文献   

4.
The polychlorinated biphenyls mixture, Aroclor 1254, generally considered a powerful inducer of rat hepatic and pulmonary microsomal monooxygenases, caused a 70% decrease in ethylmorphine N-demethylase activity, a 31% decrease in benzo(a)pyrene hydroxylase activity, and a 42% decrease in cytochrome P-450 content in rabbit lung microsomes. When pulmonary cytochrome P-450 was solubilized and subjected to column chromatography, the elution profiles of the two forms of the hemeprotein showed a marked decrease in cytochrome P-450I in treated rabbits, with no significant alteration in cytochrome P-450II content. These data were confirmed by subjecting the two cytochromes to gel electrophoresis and staining the electrophoretic bands for protein and heme-associated peroxidase activity. Cytochromes P-450I and P-450II isolated from Aroclor 1254-treated rabbits showed differences in spectral properties as well as in their stabilities. The CO difference spectral determinations showed absorbance maxima at 452 and 450 nm for cytochromes P-450I and P-450II, respectively. At room temperature, cytochrome P-450II was much more stable than P-450I. The present studies provide evidence not only for species differences in the biological actions of the polychlorinated biphenyls but also demonstrate differential effects of the environmental pollutant on the two major forms of cytochrome P-450 and associated enzymic activities in rabbit lungs.  相似文献   

5.
1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver.  相似文献   

6.
Chloroperoxidase and H2O2 oxidize styrene to styrene oxide and phenylacetaldehyde but not benzaldehyde. The epoxide oxygen is shown by studies with H2(18)O2 to derive quantitatively from the peroxide. The epoxidation of trans-[1-2H]styrene by chloroperoxidase proceeds without detectable loss of stereochemistry, as does the epoxidation of styrene by rat liver cytochrome P-450, although much more phenylacetaldehyde is produced by chloroperoxidase than cytochrome P-450. Chloroperoxidase and cytochrome P-450 thus oxidize styrene by closely related oxygen-transfer mechanisms. Horseradish peroxidase does not oxidize styrene but does oxidize 2,4,6-trimethylphenol to 2,6-dimethyl-4-hydroxymethylphenol. The new hydroxyl group is partially labeled in incubations with H2(18)O but not H2(18)O2. The hydroxyl group thus appears to be introduced by addition of oxygen to the benzylic radical and water to the quinone methide intermediate but not by a cytochrome P-450-like oxene transfer mechanism. The results support the thesis that substrates primarily or exclusively react with the heme edge of horseradish peroxidase but are able to react with the ferryl oxygen of chloroperoxidase.  相似文献   

7.
Administration of 3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine (4-ethyl-DDC) to hamsters resulted in a marked loss of cytochrome P-450-dependent reactions (peroxidase, 7-ethoxycoumarin O-deethylase, and 7-ethoxyresorufin O-deethylase) in both liver and olfactory epithelium within 2 hr. This inactivation of cytochrome P-450 was accompanied by inhibition of ferrochelatase (FK), stimulation of 5-aminolevulinate synthase (ALA-S), and accumulation of protoporphyrin both in the liver and to a lesser degree, in the olfactory epithelium. These results suggest that the mechanism of induction of protoporphyria in nasal tissues is similar to that occurring in the liver, namely, suicidal metabolism of 4-ethyl DDC by cytochrome P-450 resulting in formation of N-ethylprotoporphyrin, a potent inhibitor of FK. The consequent depletion of heme leads to stimulation of ALA-S and, thus, porphyrin accumulation. Investigation of the dose-response to 4-ethyl DDC demonstrated that, in liver, maximal inhibition of FK and accumulation of protoporphyrin occurred at a dose of 50 mg/kg while ALA-S activity continued to increase up to a dose of 100 mg/kg. This is compatible with an additional effect of the drug on ALA-S involving induction of cytochrome P-450 and, thus, further depletion of heme. In the olfactory epithelium, stimulation of ALA-S was significantly less marked, suggesting that this secondary effect does not operate in nasal tissue. This is consistent with reports that olfactory cytochrome P-450s are noninducible.  相似文献   

8.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

9.
Rat liver cytochrome P-450 mediates a novel reaction between equimolar quantities of dissolved oxygen and organic hydroperoxides. The reaction shares some of the properties of both NADPH-O2 dependent hydroxylation and NADPH-O2 independent peroxidase reactions, but does not require either NADPH, phosphatidylcholine, or any substrates other than hydroperoxide and oxygen. It proceeds at a rate approximately 100 times faster than other well known P-450 hydroxylation reactions. Monitoring the rate of O2 consumption in this novel reaction may be a simple and rapid means for studying the kinetics of cytochrome P-450.  相似文献   

10.
11.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

12.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

13.
(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochorme P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that δ-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic δ-aminolevulinic acid administration. Acute δ-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic δ-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and δ-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ. Dedicated to the memory of Dr. Susana Afonso  相似文献   

14.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

15.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

16.
A cytochrome P-450 (P-450SG1) was purified from a lanosterol 14 alpha-demethylase (P-450(14DM)) defective mutant of Saccharomyces cerevisiae, strain SG1, by a method similar to that used in the purification of the wild type enzyme (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660). P-450SG1 had the same apparent Mr as and was immunochemically identical to P-450(14DM). Peptide maps of P-450SG1 made by limited proteolysis with Staphylococcus aureus V8 proteinase, chymotrypsin, or papain followed by gel electrophoresis were identical to corresponding peptide maps of P-450(14DM). However, P-450SG1 showed no lanosterol 14 alpha-demethylase activity and its mode of interaction with diniconazole [(E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-y1)-1- penten-3- o1], a specific inhibitor of P-450(14DM), was fundamentally different from that of P-450(14DM). The absorption spectrum of ferric P-450SG1 was unusual for a native low-spin cytochrome P-450 and was superimposable on that of 1-methylimidazole complex of P-450(14DM), indicating that P-450SG1 has a histidine 6th ligand trans to the thiolate 5th ligand, while the 6th ligand of other ferric low-spin cytochrome P-450s is a water molecule or a hydroxyl group of an oxyamino acid. It is concluded that P-450SG1 is an altered P-450(14DM). Difference in the primary structure between P-450SG1 and P-450(14DM) may be slight and was not detected by peptide mapping. However, the alteration caused significant change in the substrate site and heme environments of the cytochrome. P-450SG1 is the first example of a cytochrome P-450 having a histidine axial ligand trans to thiolate and of a genetically altered cytochrome P-450 isolated in a homogeneous state.  相似文献   

17.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

18.
Cytochrome P-450cam, the bacterial hemeprotein which catalyzes the 5-exo-hydroxylation of d-camphor, requires two electrons to activate molecular oxygen for this monooxygenase reaction. These two electrons are transferred to cytochrome P-450cam in two one-electron steps by the physiological reductant, putidaredoxin. The present study of the kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin has shown that the reaction obeys first order kinetics with a rate constant of 33 s-1 at 25 degrees C with respect to: 1) the appearance of the carbon monoxide complex of Fe(II) cytochrome P-450cam; 2) the disappearance of the 645 nm absorbance band of high-spin Fe(III) cytochrome P-450cam; and 3) the disappearance of the g = 1.94 EPR signal of reduced putidaredoxin. This data was interpreted as indicative of the rapid formation of a bimolecular complex between reduced putidaredoxin Fe(III) cytochrome P-450cam. The existence of the complex was first shown indirectly by kinetic analysis and secondly directly by electron paramagnetic resonance spectroscopic analysis of samples which were freeze-quenched approximately 16 ms after mixing. The direct evidence for complex formation was the loss of the EPR signal of Fe(III) cytochrome P-450cam upon formation of the complex while the EPR signal of reduced putidaredoxin decays with the same kinetics as the appearance of Fe(II) cytochrome P-450. The mechanism of the loss of the EPR signal of cytochrome P-450 upon formation of the complex is not apparent at this time but may involve a conformational change of cytochrome P-450cam following complex formation.  相似文献   

19.
The organic hydroperoxide cumene hydroperoxide is capable of oxidizing ethanol to acetaldehyde in the presence of either catalase, purified cytochrome P-450 or rat liver microsomes. Other hemoproteins like horseradish peroxidase, cytochrome c or hemoglobin were ineffective. In addition to ethanol, higher alcohols like 1-propanol, 1-butanol and 1-pentanol are also oxidized to their corresponding aldehydes to a lesser extent. Other organic hydroxyperoxides will replace cumene hydroperoxide in oxidizing ethanol but less effectively. The cumene-hydroperoxide-dependent ethanol oxidation in microsomes was inhibited partially by cytochrome P-450 inhibitors but was unaffected by catalase inhibitors. Phenobarbital pretreatment of rats increased the specific activity of the cumene-hydroperoxide-dependent ethanol oxidation per mg of microsomes about seven-fold. The evidence suggests that cytochrome P-450 rather than catalase is the enzyme responsible for hydroperoxide-dependent ethanol oxidation. However, when H2O2 is used in place of cumene hydroperoxide, the microsomal ethanol oxidation closely resembles the catalase system.  相似文献   

20.
Intramolecular isotope effects were determined for the N-demethylation of N-methyl-N-trideuteriomethylaniline catalyzed by two isozymes of cytochrome P-450 and several peroxidases in order to differentiate between deprotonation and hydrogen atom abstraction steps. Lactoperoxidase, hemoglobin, myoglobin, and two isozymes of horseradish peroxidase catalyzed the hydroperoxide-dependent N-demethylation at initial rates ranging from 20 to 1700 min-1. These hemeproteins exhibited large and comparable intramolecular isotope effects (kH/kD = 8.6 to 10.1). In contrast, two isozymes of cytochrome P-450 as well as chloroperoxidase (v = 1.5 to 1700 min-1) gave low isotope effects (kH/kD = 1.7 to 3.1) under identical conditions. Catalase exhibited an intermediate intramolecular isotope effect (kH/kD = 5.4). These results have been interpreted to indicate that most of the hemeproteins investigated catalyze N-demethylation reactions via alpha-carbon hydrogen atom abstraction, while the reactions catalyzed by cytochrome P-450 and chloroperoxidase proceed via alpha-carbon deprotonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号