首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors causing changes in pulmonary resistance and dynamic compliance with immunoglobulin (Ig) E anaphylaxis in spontaneously breathing rabbits were assessed in ventilated rabbits using tantalum bronchography and wet-to-dry wt ratios. Ventilated rabbits demonstrated changes in resistance and compliance similar to spontaneously breathing rabbits. Chlorpheniramine pretreatment prevented increases in resistance but not decreases in compliance. Anaphylaxis constricted small (less than 1 mm) airways 20.9 +/- 16.0% (mean +/- SD) and intermediate (between 1 and 3 mm) airways 21.8 +/- 19.8%. Chlorpheniramine (10 mg/kg) prevented small airway changes and attenuated those in intermediate airways. Chlorpheniramine prevented histamine-induced constriction of small (23.6 +/- 15.7%) and intermediate (17.6 +/- 15.0%) airways. Lung wet-to-dry wt ratios were unchanged. Changes in resistance and compliance during rabbit IgE anaphylaxis are not due to changes in tidal volume or frequency. Histamine, via H1 receptors, is the principal mediator of pulmonary resistance increases but not dynamic compliance reductions. Chlorpheniramine-sensitive increases in resistance are caused by constrictions of intermediate and small airways, whereas the chlorpheniramine-resistant decrease in compliance is not caused directly by constriction of the smallest measurable airways (0.25 mm) or changes in lung water.  相似文献   

2.
Vascular smooth muscle in hypertension   总被引:1,自引:0,他引:1  
The cause of the elevated arterial pressure in most forms of hypertension is an increase in total peripheral resistance. This brief review is directed toward an assessment of recent investigations contributing information about the factors responsible for this increased vascular resistance. Structural abnormalities in the vasculature that characterize the hypertensive process are 1) changes in the vascular media, 2) rarefication of the resistance vessels, and 3) lesions of the intimal vascular surface. These abnormalities are mainly the result of an adaptive process and are secondary to the increase in wall stress and/or to pathological damage to cellular components in the vessel wall. Functional alterations in the vascular smooth muscle are described as changes in agonist-smooth muscle interaction or plasma membrane permeability. These types of changes appear to play a primary, initiating role in the elevation of vascular resistance of hypertension. These alterations are not the result of an increase in wall stress and they often precede the development of high blood pressure. The functional changes are initiated by abnormal function of neurogenic, humoral, and/or myogenic changes that alter vascular smooth muscle activity.  相似文献   

3.
Class resistance to beta-lactam antibiotics in Gram-positive bacteria is mediated by structural changes in transpeptidase penicillin-binding proteins. These structural changes render a complex series of interactions between antibiotic and protein that are energetically unfavorable, such that the active site is inactivated not at all or too slowly to prevent cell-wall synthesis and bacterial growth. Determination of the crystal structure of the low-affinity penicillin-binding protein PBP2a, which mediates beta-lactam antibiotic resistance in staphylococci, has identified the molecular structures and interactions that are responsible for resistance. This information could be useful for designing beta-lactams to overcome these structural impediments, as well as resistance.  相似文献   

4.
The time-course of light-induced changes in membrane voltage and resistance were measured in single photoreceptors in eyecup preparations of Gekko gekko. A small circular stimulus directed toward the impaled receptor produced membrane hyperpolarization. Application of a steady annular light to the receptor periphery resulted in diminution of the receptor's response to the stimulus. The effects of illumination of the surrounding receptors were isolated by directing a small, steady desensitizing light to the impaled receptor and then applying a peripheral stimulus. Brief stimuli produced a transient decrease in resistance with rapid onset and offset, a time-course similar to that of the response diminution. For some cells a depolarization that coincided with the resistance decrease was seen. During illumination with prolonged stimuli the resistance decrease was followed by a slow increase. After offset resistance rose transiently above the original value and then returned slowly to its original value. The slow resistance changes were not accompanied by changes in membrane voltage. The response diminution, resistance decrease, and depolarization were not observed in retinas treated with aspartate or hypoxia. It is therefore concluded that these effects are mediated by horizontal cells. The diminution is achieved by shunting the receptor potential and may play a role in field adaptation.  相似文献   

5.
Non‐small cell lung cancer (NSCLC) patients carrying EGFR activating mutations treated with gefitinib, a tyrosine kinase inhibitor, will develop drug resistance. Ubiquitylation is one of major posttranslational modifications of proteins affecting the stability or function of proteins. However, the role of protein ubiquitylation in gefitinib resistance is poorly understood. To systematically identify the global change in protein expression and ubiquitylation during gefitinib resistance, a quantitative global proteome and ubiquitylome study in a pair of gefitinib‐resistant and sensitive NSCLC cells is carried out. Altogether, changes in expression of 3773 proteins are quantified, and changes in ubiquitylation of 2893 lysine sites in 1415 proteins are measured in both cells. Interestingly, lysosomal and endocytic pathways, which are involved in autophagy regulation, are enriched with upregulated proteins or ubiquitylated proteins in gefitinib‐resistant cells. In addition, HMGA2 overexpression or ALOX5 knockdown suppresses gefitinib resistance in NSCLC cells by inhibiting autophagy. Overall, these results reveal the previously unknown global ubiquitylome and proteomic features associated with gefitinib resistance, uncover the opposing roles of HMGA2 or ALOX5 in regulating gefitinib resistance and autophagy, and will help to identify new therapeutic targets in overcoming gefitinib resistance.  相似文献   

6.
Glutathione-related enzymes,glutathione and multidrug resistance   总被引:2,自引:0,他引:2  
This review examines the hypothesis that glutathione and its associated enzymes contribute to the overall drug-resistance seen in multidrug resistant cell lines. Reports of 34 cell lines independently selected for resistance to MDR drugs are compared for evidence of consistent changes in activity of glutathione-related enzymes as well as for changes in glutathione content. The role of glutathione S-transferases in MDR is further analyzed by comparing changes in sensitivity to MDR drugs in cell lines selected for resistance to non-MDR drugs that have resulting increases in glutathione S-transferase activity. In addition, results of studies in which genes for glutathione S-transferase isozymes were transfected into drug-sensitive cells are reviewed. The role of the glutathione redox cycle is examined by comparing changes in elements of this cycle in MDR cell lines as well as by analyzing reports of the effects of glutathione depletion on MDR drug sensitivity. Overall, there is no consistent or compelling evidence that glutathione and its associated enzymes augment resistance in multidrug resistant cell lines.  相似文献   

7.
Fixation of adaptive mutations in populations is often constrained by pleiotropic fitness costs. The evolutionary pathways that compensate such fitness disadvantages are either the occurrence of modifier genes or replacement of the adaptive allele by less costly ones. In this context, 23 years of evolution of insecticide resistance genes in the mosquito Culex pipiens from southern France are analyzed. The aim of this study is to answer the following points. Is there a fitness cost associated with these resistance genes in natural populations? Does evolution proceed through allele replacement or through selection of modifiers? And finally, how do environmental changes affect the evolution of resistance genes? Samples from the same transect, crossing the boundary between an insecticide-treated and a nontreated area, are analyzed. Clinal analyses indicate a variable fitness cost among the resistance genes and show that allele replacement has been the primary mechanism of resistance evolution in this area. It is also shown that replacement was probably due to environmental changes corresponding to modification in pesticide-treatment intensity.  相似文献   

8.
Various forms of preventive and prophylactic antimicrobial therapies have been proposed to combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy) and malaria (e.g. intermittent preventive treatment). However, the potential population-level effects of preventative therapy (PT) on the prevalence of drug resistance are not well understood. PT can directly affect the rate at which resistance is acquired among those receiving PT. It can also indirectly affect resistance by altering the rate at which resistance is acquired through treatment for active disease and by modifying the level of competition between transmission of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to explore the ways in which PT can affect the long-term prevalence of drug resistance. Depending on the relative contributions of these three mechanisms, we find that increasing the level of coverage of PT may result in increases, decreases or non-monotonic changes in the overall prevalence of drug resistance. These results demonstrate the complexity of the relationship between PT and drug resistance in the population. Care should be taken when predicting population-level changes in drug resistance from small pilot studies of PT or estimates based solely on its direct effects.  相似文献   

9.
Although reductionist experimental designs are excellent for identifying cells, molecules, or functions involved in resistance to particular microbes or cancer cells, they do not provide an integrated, quantitative view of immune function. In the present study, mice were treated with either dexamethasone (DEX) or cyclosporin A (CyA), and immune function and host resistance were evaluated. Multivariate statistical methods were used to describe the relative importance of a broad range of immunological parameters for host resistance in mice treated with various dosages of DEX. Multiple regression and logistic regression analysis indicated that changes in 24 immunological parameters explained a substantial portion of the changes in resistance to B16F10 tumor cells or streptococcus group B. However, at least 40% of the change in host resistance remained unexplained. DEX at all dosages substantially suppressed numerous relevant immunological parameters, but significantly decreased resistance to Listeria monocytogenes only at the highest dosage. In contrast, CyA substantially decreased resistance to L. monocytogenes at dosages that caused relatively minor suppression of just a few immunological parameters (unfortunately, CyA data and host resistance data for L. monocytogenes were not suitable for multivariate analysis). These results illustrate that mathematical models can be used to explain changes in host resistance on the basis of changes in immune parameters, and that moderate changes in relevant immunological parameters may not produce the types of changes in host resistance expected on the basis of results from reductionist experimental designs.  相似文献   

10.
The risk for insulin resistance and subsequent type 2 diabetes varies between different ethnic populations due to differences in the genetic and environmental background. However, obesity and unhealthy lifestyle, crucial determinants of insulin resistance, are on the rise throughout all population groups though the susceptibility towards those factors may differ. Up to the present day it is not clear whether insulin resistance is based on metabolic changes due to lifestyle modifications or rather an ethnic and thus genetic grounded phenomenon. Genetic variations in secretion products of the active fat tissue (adipokines), a different pathophysiology of changes in glucose metabolism and the deep impact of urbanization (environmental factors) are discussed as primary determinants for differences in manifestation of insulin resistance between Caucasian and African populations. These factors may be influenced or modified by a central theme: visceral obesity. This mini review will elaborate on these issues illustrated by observations from Caucasian and African cohorts.  相似文献   

11.
Intracellular recordings of mouse taste cell responses were made using glass microelectrodes filled with procion yellow dye solution. Only responses recorded from taste buds with fluorescent cells, as observed in subsequent histological preparations, were used in this study. The mouse taste cell depolarizes when stimulated with sucrose and is accompanied by either a resistance increase or no change. On the other hand, a NaCl stimulus produces a depolarization, hyperpolarization or null response and is accompanied by either a membrane resistance decrease or no change. Four sugars other than sucrose (maltose, fructose, glucose and lactose) produced the depolarization or null responses and were accompanied by an increase or no change in membrane resistance. From the above observations, it is suggested that each taste cell produces its own characteristic response profiles and membrane resistance changes for the five sugars and NaCl tested.  相似文献   

12.
Although sensitive to various disrupters, pre-implantation embryos possess some cellular cytoprotective mechanisms that allow continued survival in the face of a deleterious environment. For stresses such as heat shock, embryonic resistance increases as development proceeds. Present objectives were to determine whether (1) arsenic compromises development of pre-implantation bovine embryos, (2) developmental changes in embryonic resistance to arsenic mimic those seen for resistance to heat shock, and (3) developmental patterns in induction of apoptosis by arsenic are correlated with similar changes in resistance of embryos to inhibitory effects of arsenic on development. Bovine embryos produced by in vitro fertilization were exposed at the two-cell stage or at day 5 after insemination (embryos > or = 16-cells in number) to either sodium arsenite (0, 1, 5, or 10 microM) or heat shock (exposure to 41 degrees C for 0, 3, 4.5, 6, or 9 hr). Arsenic induced apoptosis and increased group 2 caspase activity for embryos at the > or = 16-cell stage, but not for embryos at the two-cell stage. In contrast to these developmental changes in apoptosis responses, exposure to arsenic reduced cell number 24 hr after exposure for both two-cell embryos and embryos > or = 16-cells. Similarly, the percentage of embryos that developed to the blastocyst stage at day 8 after fertilization was reduced by arsenic exposure at both stages of development. Heat shock, conversely, reduced development to the blastocyst stage when applied at the two-cell stage, but not when applied to embryos > or = 16-cells at day 5 after insemination. In conclusion, arsenic can compromise development of bovine pre-implantation embryos, the temporal window of sensitivity of embryos to arsenic is wider than for heat shock, and cellular cytoprotective responses that embryos acquire for thermal resistance are not sufficient to cause increased embryonic resistance to arsenic exposure. It is likely that despite common cellular pathologies caused by arsenic and heat shock, arsenic acts to reduce development in part through biochemical pathways not activated by heat shock. Moreover, the embryo does not acquire significant resistance to these perturbations within the time frame in development examined.  相似文献   

13.
Bacterial resistance to biocides is basically of two types: (i) intrinsic, a natural chromosomally-controlled property of an organism, (ii) acquired, resulting from genetic changes in a cell and arising either by mutation or by the acquisition of genetic material. Both types of resistance are discussed together with the underlying biochemical mechanisms where known. Specific examples of organisms are provided by reference to bacterial spores, mycobacteria, other Gram-positive bacteria and Gram-negative bacteria. The stability of resistance to biocides is considered, as is the possible linkage between biocide and antibiotic resistance.  相似文献   

14.
Microarrays have been used to examine changes in gene expression underlying responses to selection for increased stress resistance in Drosophila melanogaster, but changes in expression patterns associated with increased resistance to cold stress have not been previously reported. Here we describe such changes in basal expression levels in replicate lines following selection for increased resistance to chill coma stress. We found significant up- or down-regulation of expression in 94 genes on the Affymetrix Genome 2.0 array. Quantitative RT-PCR was used to confirm changes in expression of six genes. Some of the identified genes had previously been associated with stress resistance but no previously identified candidate genes for cold resistance showed altered patterns of expression. Seven differentially expressed genes that form a tight chromosomal cluster and an unlinked gene AnnX may be potentially important for cold adaptation in natural populations. Artificial selection for chill coma resistance therefore altered basal patterns of gene expression, but we failed to link these changes to plastic changes in expression under cold stress or to previously identified candidate genes for components of cold resistance.  相似文献   

15.
Samuel VT  Shulman GI 《Cell》2012,148(5):852-871
Insulin resistance is a complex metabolic disorder that defies explanation by a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway, and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, these cellular changes may converge to promote the accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, a common final pathway leading to impaired insulin signaling and insulin resistance.  相似文献   

16.
Quiescent Swiss mouse 3T3 cells react to a heat treatment at 46°C for 20 min by changing their flat, well-extended morphology to a round appearance with retracted cytoplasmic processes during the subsequent 2 h at 37°C. The percentage of morphologically changed cells was used to quantify changes in heat sensitivity, or resistance, in response to mitogenic stimulation. Stimulating quiescent cells with serum or with the specific growth factors epidermal growth factor (EGF) and prostaglandin F (PGF) markedly increased the heat resistance to a 46°C treatment, but only when the heat treatment, but only when the heat treatment was applied within 2–3 h after the addition. When insulin (which is not mitogenic, but synergistic with EGF and PGF in these cells) was added alone or in combination with either EGF or PGF, it had no effect on the development of heat resistance. Neither did cycloheximide nor tunicamycin inhibit heat resistance induced by EGF, and cycloheximide even enhanced it after 2–4 h. However, adding colcemid before or at the beginning of the heat treatment abolished the increased heat resistance. The results indicate that the resistance to a single heat treatment at 46°C may be related to changes in the metabolic state after mitogenic stimulation, even though these changes need not be reflected in the rate of entry into S phase. Furthermore, the cytoskeletal organization appears to be a crucial component in heat resistance of Swiss 3T3 cells.  相似文献   

17.
Insulin resistance is a major pathologic feature of human obesity and diabetes. Understanding the fundamental mechanisms underlying this insulin resistance has been advanced by the recent cloning of the genes encoding a family of facilitated diffusion glucose transporters which are expressed in characteristic patterns in mammalian tissues. Two of these transporters, GLUT1 and GLUT4, are present in muscle and adipose cells, tissues in which glucose transport is markedly stimulated by insulin. To understand the mechanisms underlying in vivo insulin resistance, regulation of these transporters is being investigated. Studies reveal divergent changes in the expression of GLUT1 and GLUT4 in a single cell type as well as tissue specific regulation. Importantly, alterations in glucose transport in rodent models of diabetes and in human obesity and diabetes cannot be entirely explained by changes in glucose transporter expression. This suggests that defects in glucose transporter function such as impaired translocation, fusion with the plasma membrane, or activation probably contribute importantly to in vivo insulin resistance.  相似文献   

18.
Cisplatin is used for the treatment of many types of solid cancers. While testicular cancers respond remarkably well to cisplatin, the therapeutic efficacy of cisplatin for other solid cancers is limited because of intrinsic or acquired drug resistance. Our understanding about the mechanisms underlying cisplatin resistance has largely arisen from studies carried out with cancer cell lines in vitro. The process of cisplatin resistance appears to be multifactorial and includes changes in drug transport leading to decreased drug accumulation, increased drug detoxification, changes in DNA repair and damage bypass and/or alterations in the apoptotic cell death pathways. Translation of these preclinical findings to the clinic is emerging, but still scarce. The present review describes and discusses the clinical relevance of in vitro models by comparing the preclinical findings to data obtained in clinical studies.  相似文献   

19.
In the current study, the hydroxycinnamic acids in silks of diverse maize inbred lines differing in Fusarium resistance were determined at several times after inoculation with Fusarium graminearum or sterile water as control. The main objective was to determine the possible relationship between the hydroxycinnamic acid changes in silks and ear rot resistance. Several changes in the cell-wall-bound hydroxycinnamic acid concentrations were observed after inoculation with F. graminearum, although these changes were not directly correlated with genotypic resistance to this fungus. Ester-bound ferulic acid decreased, probably due to degradation of hemicellulose by hydrolytic enzymes produced by Fusarium spp., while p-coumaric acid and diferulates showed slight increases that, in conjunction, did not result in delayed F. graminearum progression through the silks. It is important to note that the decrease of ferulic acid in the F. graminearum treatment was faster in susceptible than in resistant genotypes, suggesting a differential hemicellulose degradation in silk tissues. Therefore, the ability of the maize genotypes to slow down that process through hemicellulose structural features or xylanase inhibitors needs to be addressed in future studies.  相似文献   

20.
司鑫鑫  孙玉洁 《遗传》2014,36(5):411-419
肿瘤耐药是导致肿瘤化疗失败的主要原因, 其产生机制复杂多样, 是多种因素共同作用的结果。近年来, 表观遗传改变在肿瘤耐药中的作用日益受到关注。DNA甲基化是一种重要的表观遗传修饰, 在调节基因表达和维持基因组稳定性中扮演着重要角色。原发性或获得性耐药的肿瘤细胞大多伴随DNA异常甲基化, 越来越多的证据显示, DNA甲基化异常是肿瘤细胞耐药表型产生的重要机制。文章就DNA甲基化异常与肿瘤细胞耐药的关系及相关作用机制进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号