首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Periodic collections of uterine venous blood were obtained from three nonmated, three pregnant and two mated but nonpregnant ewes in which uterine veins were cannulated with polyvinyl tubing on day 11 postestrus. Frequent sampling was achieved in three of these ewes with additional cannulae in the ovarian veins. Blood samples were collected at 3-hr intervals from 0600 on day 12 to 1800 on day 13 and then at 6-hr intervals through day 15. On day 13, three additional samples at 30-min intervals were collected between 1400 and 1530. Prostaglandins F (PGF) in plasma were quantified by radioimmunoassay.  相似文献   

2.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

3.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

4.
The effect of pregnancy on concentrations of prostaglandins E2, F2 alpha and 6-keto-prostaglandin F1 alpha (PGE2, PGF2 alpha and 6-keto-PGF1 alpha) in utero-ovarian venous plasma was examined in ewes on Days 10 through 14 after estrus, an interval which includes the critical period for maternal recognition of pregnancy. The utero-ovarian vein ipsilateral to a corpus luteum was catheterized on Day 9 or 10 in 6 pregnant and 8 nonpregnant ewes. Five blood samples were collected at 30-min intervals for 2 h beginning at 0500 and 1700 h daily. Sampling began at 0500 h on the day after catheterization. The mean and variance within each 2-h collection period were calculated for each ewe. The natural logarithm of the variance in each collection period (ln variance) was used as an estimate of the fluctuations in secretory activity by the endometrial-conceptus complex. Patterns of the mean concentrations of PGE2 were different between pregnant and nonpregnant ewes (P less than 0.01); PGE2 being higher in the pregnant ewes beginning on Day 13. There was a trend for the patterns of ln variance in PGE2 to differ (P less than 0.1) with pregnancy status over the entire period; ln variance was greater in pregnant ewes beginning on Day 13. The patterns of the mean concentrations and ln variances for PGF2 alpha and 6-keto-PGF1 alpha did not differ between pregnant and nonpregnant ewes. There were significant increases in both of these prostaglandins over time, independent of pregnancy status (P less than 0.01). The association of higher concentrations of PGE2 in utero-ovarian venous plasma with early pregnancy is consistent with the hypothesis that PGE2, originating from the uterus and/or conceptus, is one factor involved in maintenance of the corpus luteum of pregnancy.  相似文献   

5.
Experiment 1 was conducted to determine when the ovine uterus develops the ability to secrete prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin and how development is affected by pregnancy. Pregnant and nonpregnant ewes received an injection of oxytocin (10 IU, i.v.) on Day 10, 13, or 16 postestrus. Jugular venous blood samples were collected for 2 h after injection for quantification of 13,14-dihydro-15-keto-PGF2 alpha (PGFM). In nonpregnant ewes, concentrations of PGFM increased following oxytocin on Day 16 but not on Day 10 or 13. Concentrations of PGFM did not increase following treatment on Day 10, 13, or 16 in pregnant ewes. Therefore, the ability of oxytocin to induce uterine secretion of PGF2 alpha develops after Day 13 in nonpregnant but not in pregnant ewes. Experiment 2 was conducted to precisely define when uterine secretory responsiveness to oxytocin develops. Pregnant and nonpregnant ewes received oxytocin on Day 12, 13, 14, or 15. In nonpregnant ewes, concentrations of PGFM increased following treatment on Days 14 and 15, but not earlier. Peripheral concentrations of progesterone showed that uterine secretory responsiveness to oxytocin developed prior to the onset of luteal regression. As in experiment 1, the increase in concentrations of PGFM following administration of oxytocin was much lower in pregnant than in nonpregnant ewes; however, some pregnant ewes did respond to oxytocin with an increase in PGFM. In experiment 3, pregnant ewes received an injection of oxytocin on Day 18, 24, or 30 postmating. Concentrations of PGFM increased following oxytocin on Days 18 and 24. The conceptus appears to delay and attenuate the development of uterine secretory responsiveness to oxytocin.  相似文献   

6.
A single dose of 8 or 16 mg of PGF2 alpha per 58 kg body weight was injected intramuscular into intact, ovariectomized or hysterectomized 90-100 day pregnant sheep in three separate experiments. Both doses of PGF2 alpha decreased the weights of the corpora lutea (P less than or equal to 0.05) and the concentration of progesterone in ovarian venous plasma at 72 hr (P less than or equal to 0.05) compared to the 0 hr sample within treatment groups and to control ewes at 72 hr in intact and hysterectomized pregnant ewes. In hysterectomized pregnant ewes, progesterone in jugular plasma declined (P less than or equal to 0.05) from 0 to 72 hr but never fell below 4 mg/ml and this decrease in progesterone after 8 or 16 mg PGF2 alpha was greater than in control hysterectomized ewes (P less than or equal to 0.05). There was a significant decrease in progesterone over time in jugular or uterine venous plasma in the presence of absence of the ovaries in 90-100 day pregnant ewes (P less than or equal to 0.05) but the profiles of progesterone were not different between vehicle and PGF2 alpha-treated ewes (P greater than or equal to 0.05). Uterine venous progesterone never declined below 30 ng/ml in the presence or absence of the ovaries and there was a significant quadratic increase (P less than or equal to 0.05) in uterine venous progesterone toward the end of the 72 hr sampling period indicating an increase in steroidogenic activity of the placenta. PGF2 alpha did not affect the number of abortions in intact or ovariectomized pregnant ewes (P greater than 0.05). Thus, the corpus luteum of sheep at 90-100 days of pregnancy is functional and responsive to PGF2 alpha, placentomes are functional but do not appear to be responsive to the doses of PGF2 alpha tested and PGF2 alpha was not an abortifacient over the 72 hr treatment period.  相似文献   

7.
Vehicle or 8 or 16 mg of PGF per 58 kg body weight was given intramuscularly to intact, hysterectomized or ovariectomized 90–100 day pregnant ewes in three separate experiments. Both doses of PGF increased PGF in ovarian venous plasma compared with controls at 72 hr post treatment in intact (P≤0.05) but did not in hysterectomized (P≥0.05) 90–100 day pregnant ewes. Concentrations of PGE in ovarian venous blood of intact ewes did not differ (P≥0.05) between treatment groups and were equivalent to concentrations of PGE determined in uterine venous plasma. PGE was decreased in ovarian venous plasma by PGF in hysterectomized ewes (P≤0.07). PGE in uterine venous plasma averaged 6 ng/ml over the 72-hr treatment period in intact and ovariectomized 90–100 day pregnant ewes and was 12 fold greater (P≤0.05) than PGF which averaged 500 pg/ml in uterine venous plasma. Both PGF and PGE increased (P≤0.05) by 64 hr in uterine venous plasma of the 8 mg PGF — treated intact pregnant ewes. A significant quadratic increase (P≤0.05) was observed for PGF and PGE in the vehicle and both PGF treatment groups of intact ewes at the end of the 72-hr sampling period. It is concluded that the uterus and ovaries secrete significant quantities of PGE but little PGF during midgestation. In addition, PGF increased uterine secretion of PGE . PGE may be a placental stimulator of ovine placental secretion of progesterone or PGE may protect placental steroidogenesis from actions of PGF.  相似文献   

8.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 alpha(PGF2 alpha) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregnancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postestrus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesterone sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uteroovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embryos. Mating had no effect on mean daily concentrations of PGE2 alpha or the patterns of the natural logarithm (1n) of the variance of PGF2 alpha. Ovariectomy resulted in higher mean concentrations and 1n variances of PGF2 alpha on day 13 and lower mean concentrations and 1n variances of PGF2 alpha on days 15 and 16. Replacement with progesterone prevented these changes in patterns of mean concentrations and 1n variances of PGF2 alpha following ovariectomy. It is concluded that progesterone regulates the release of PGF2 alpha from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2 alpha which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

9.
Accuracy of ultrasonography in early pregnancy diagnosis in the ewe   总被引:3,自引:0,他引:3  
Nonbred and pregnant ewes were examined ultrasonographically at intervals of 4 to 6 days on Days 17 to 34 after estrus. Each ewe was diagnosed as pregnant or nonpregnant, and a score for degree of certainty in the diagnosis was recorded. The goal of the study was to define criteria that could be used for identification and accuracy of diagnosis of an early conceptus and to ascertain the confidence which the operator had in makeing the diagnosis. Pregnancy was retrospectively confirmed by ultrasonographic detection of an embryo proper and by embryonic heartbeat on Days 21 to 34, and later judged against the number of lambs born to each ewe. The percentage of ewes accurately diagnosed pregnant by ultrasonography was not significantly higher than that by guessing (50%) before Day 24, but reached 85% on Days 32 and 34. However, the ability to detect nonpregnant ewes by ultrasonography was higher (P<0.01), with a greater specificity starting on Days 21 to 23 (80%) and reaching 98% by Days 32 to 34. Before Day 24, the diagnosis of pregnancy in many cases was based primarily upon the ultrasonographic appearance of the uterine lumen and location of the uterus in relation to the bladder rather than upon detection of the conceptus. For the certainty score there was a main effect of day (P<0.01) but not for the reproductive status (pregnant vs nonpregnant). The certainty score increased in all ewes among days, and was highest on Days 32 to 34. It was concluded that real time transrectal ultrasonographic scanning of sheep between Days 24 and 34 of gestation offers a safe, accurate and practical means for diagnosing pregnancy.  相似文献   

10.
In sheep, induction of ovulation during anoestrus is accompanied by a high incidence of short luteal phases, though pre-treatment with progesterone can overcome this problem. We have investigated the effects of supplementing oestradiol during GnRH-induced ovulation on subsequent PGF2alpha release and luteal life span. Thirty anoestrous crossbred ewes received 250 ng GnRH i.v. at 2 h intervals for 48 h to induce ovulation either alone (group 1; n=10) or in association with either an i.m. injection of 20 mg progesterone 3 days earlier (group 2; n=10) or 3 i.m. injections of 10 microg oestradiol at 8 h intervals on the second day of GnRH treatment (group 3; n=10). Laparoscopy, performed 3 days following GnRH to confirm ovulation and 8 days later, coupled with plasma progesterone analysis were used to determine luteal life span. On day 4 following GnRH, plasma samples were collected at 20 min intervals for 8 h to monitor PGF2alpha release. One ewe from group 1 failed to ovulate and was excluded from further analysis. All groups showed an increase (P<0.01) in plasma oestradiol during GnRH treatment, with group 3 showing a marked (P<0.001) increase over that seen in the other two groups. In group 1 there were 1.4+/-0.2 PGF2alpha episodes/ewe/8 h. In group 2, pre-treatment with progesterone caused the complete inhibition of PGF2alpha episodes (0 episodes/ewe/8 h) while in group 3, treatment with oestradiol resulted in a significant reduction (0.3+/-0.1 episodes/ewe/8 h) compared with group 1 (P<0.01). In group 1, 9/9 ewes exhibited short cycles compared with 2/10 ewes in group 2 (P<0.01). In group 3 the proportion of ewes showing short cycles 7/10 ewes was not significantly different from the other groups. While treatment with oestradiol caused a significant attenuation of PGF2alpha release, this was associated with only a partial reduction in the incidence of short cycles.  相似文献   

11.
The purpose of this work was to investigate the effect of oxytocin on prostaglandin F (PGF) concentrations in uterine venous effluent. PGF was measured in utero-ovarian venous plasma from three pregnant ewes and in posterior vena caval plasma, from two puerperal ewes, during oxytocin administration. Oxytocin caused 4.9 – 5.3-fold increases in PGF concentrations in the pregnant animals, the response increasing towards term. In the puerperal animals oxytocin caused 3.7 – 17.2-fold increases in PGF concentrations with a marked latency in the response. Measurement of uterine activity and progesterone and total unconjugated oestrogen concentrations indicated that neither uterine contractions nor a decreased uterine blood flow accounted for the elevated PGF levels stimulated by oxytocin.  相似文献   

12.
Six non-pregnant ewes at day 12 of the estrous cycle each had a day-12 embryo transferred into the uterine horn ipsilateral to the corpus luteum, and 4 non-pregnant ewes at day 13 each had a day-13 embryo similarly transferred. Four control ewes, 2 at day 12 and 2 at day 13 received sheep serum into the uterine horn ipsilateral to the corpus luteum. Jugular blood samples were taken at 2-hourly intervals for 3 days post-surgery, then twice-daily for a further 4 days, and the plasma radioimmunoassayed for progesterone and 13,14-dihydro-15-keto-prostaglandin F. All control ewes exhibited estrus within the expected time range and pulsatile peaks of 13,14-dihydro-15-keto-prostaglandin F occurred coincident with declining progesterone levels. With one exception, the recipient ewes had prolonged cycles and those ewes found pregnant at necropsy, 30 days after transfer, showed no progesterone decline and no pulsatile peaks of prostaglandin during days 12 to 16 after estrus. These observations suggest that the presence of the embryo at a critical stage after mating suppresses the release of uterine prostaglandin F.  相似文献   

13.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2α (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PHF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endormetrium pregnant ewes secreted more PGF fro both lumenal and myotrial sides than endometrium from cyclic ewes (P<0.05). Oxytocin stimulated secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alon. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreament of endometrium with oTP-1 has the same effect on oxytocin-induced PGF section was cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) preganancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

14.
Pregnancy and intrauterine infusion of ovine trophoblast protein one (oTP-1) decrease oxytocin-induced secretion of prostaglandin F2 alpha (PGF) from the uterus. In the present study, effects of oTP-1 and pregnancy on endometrial secretion of PGF were examined in an in vitro perifusion system. In Experiment 1, endometrium from day 14 pregnant and cyclic ewes was perifused sequentially on both the lumenal and myometrial sides with Krebs Ringers Bicorbonate solution (KRB), KRB plus oxytocin (1 IU/ml) and KRB alone. Endometrium from pregnant ewes secreted more PGF from both lumenal and myometrial sides than endometrium from cyclic ewes (P less than 0.05). Oxytocin stimulated secretion of PGF from both sides of endometrium regardless of status. Secretion of PGF was greater from the lumenal surface of endometrium compared to myometrium (P less than 0.05) for pregnant and cyclic ewes. For Experiment 2, endometrium was collected from day 15 cyclic ewes and perifused sequentially with KRB, KRB plus 300 ng/ml of either Bovine Serum Albumin (BSA) or oTP-1, KRB with or without BSA or oTP-1 plus oxytocin (1 IU/ml) and then KRB alone. Oxytocin stimulated greater release of PGF from oTP-1-treated than BSA-treated endometrium. Pretreatment of endometrium with oTP-1 had the same effect on oxytocin-induced PGF secretion as cotreatment with oTP-1 and oxytocin. In Experiment 3, uterine horns of cyclic ewes were catheterized on day 10 of the estrous cycle, and infused with either oTP-1 or day 16 pregnant sheep serum proteins on days 12, 13 and 14. Endometrium was collected on day 15 and perifused sequentially with KRB, KRB plus oxytocin (1 IU/ml) and then KRB alone. Treatment of ewes with oTP-1 attenuated endometrial secretion of PGF in response to oxytocin. Results of this study indicate that: (1) pregnancy stimulates basal secretion of PGF from endometrium and has no effect on oxytocin-induced secretion of PGF in vitro; (2) short-term oTP-1 treatment enhances oxytocin-induced PGF secretion from day 15 cyclic endometrium and (3) long-term oTP-1 treatment in vivo inhibits oxytocin-induced PGF secretion in ewes.  相似文献   

15.
In Experiment 1, 12 unmated cyclic ewes received twice-daily intrauterine injections on Days 12 to 14 of one of the following treatments: 1) ovine conceptus secretory proteins (oCSP) containing 25 mug of ovine trophoblast protein-1 (oTP-1) as determined by RIA; 2) 25 or 50 mug recombinant human interferon alpha1 (rhlFN); or 3) 1500 ug of serum proteins (oSP) from a Day-16 pregnant ewe (estrus = Day 0) per uterine horn. Ewes receiving oCSP had longer interestrous intervals (27 +/- 2 days; P<0.05) than ewes receiving oSP (17 +/- 2 days). Ewes receiving either dose of rhlFN had an interestrous interval of 16 +/- 2 days which did not differ (P>0.10) from that of oSP-treated ewes. In Experiment 2, 59 normally cycling ewes, mated on Day 0, received twice-daily intramuscular injections of either 2 mg recombinant bovine interferon alpha1 (rblFN) or placebo on Days 12 to 15 post estrus. On Day 16, pregnancy was confirmed by flushing a morphologically normal conceptus from the uterus. Pregnancy rates for rblFN-treated (80%) and placebo-treated (62%) ewes were not different (P>0.10). Uterine flushings and conceptus-conditioned medium were assayed for oTP-1. Total oTP-1 in conceptus-conditioned culture medium was higher (P<0.02) when conceptuses were from placebo-treated (104 +/- 14 mug/conceptus) than from rblFN-treated (56 +/- 12 mug/conceptus) ewes; while total oTP-1 in uterine flushings was similar (P>0.10) for placebo-treated (132 +/- 15 mug/conceptus) and rblFN-treated (147 +/- 17 mug/conceptus) ewes. The interval from mating to subsequent estrus following conceptus removal was 31 +/- 1 and 28 +/- 1 days for pregnant ewes treated with rblFN and placebo, respectively. Interestrous intervals for nonpregnant ewes were longer (P<0.02) for rblFN-treated (27 +/- 3 days) than for placebo-treated (18 +/- 2 days) ewes.  相似文献   

16.
This study was undertaken to investigate the effect of systemic or intrauterine injections of indomethacin, a known prostaglandin (PG) synthetase inhibitor, on peripheral plasma oxytocin-associated neurophysin (OT-N) concentrations in ewes over the time of expected luteolysis. In the first experiment, 9 ewes were given i.m. injections of indomethacin (4 mg/kg live weight, n = 4) or vehicle (n = 5) 3 times/day over Days 13-15 of the estrous cycle. Blood samples were collected at hourly intervals from 0700 h on Day 13 to 1800 h on Day 15 post-estrus. In the second experiment, indomethacin (20 mg, n = 5) or the injection vehicle (n = 4) was given twice daily into the uterine horn over Days 12-14 post-estrus. Blood samples were collected at hourly intervals from Day 12 to 14. In the third experiment, 4 additional ewes were bled at 5-min intervals from 1200 to 1600 h on Day 13 of the estrous cycle. Plasma samples were analyzed for OT-N and 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) to provide an indirect index for ovarian oxytocin and uterine prostaglandin F2 alpha release, respectively. Results from the first experiment indicated that surges in plasma OT-N concentrations occurred in the vehicle-treated ewes but were suppressed in ewes given systemic injections of indomethacin. Intrauterine indomethacin injections did not cause a significant reduction in the maximum peak height or number of peaks when compared with the control ewes. In the third experiment, there was a marked increase in plasma OT-N concentrations, but no significant rise in plasma PGFM concentrations in one ewe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Plasma membrane receptors for prostaglandins (PG) F2 alpha and E2 were quantified in ovine corpora lutea obtained from nonpregnant and pregnant ewes on Days 10, 13, and 15 post-estrus, and from additional ewes on Days 25 and 40 of pregnancy. Regardless of reproductive status or day post-estrus, concentrations of luteal receptors for PGF2 alpha were 7- to 10-fold greater than those for PGE2. In pregnant ewes the concentration of receptors for PGF2 alpha was highest on Day 10 (35.4 +/- 2.8 fmol/mg) and lowest on Day 25 (22.3 +/- 2.5 fmol/mg). A difference in the concentration of luteal receptors for PGF2 alpha between pregnant and nonpregnant ewes was apparent only on Day 15 post-estrus, at which time the concentration of receptors for PGF2 alpha was higher in pregnant ewes than in nonpregnant ewes (27.1 +/- 2.7 vs. 17.7 +/- 2.7 fmol/mg). Concentrations of receptors for PGE2 in pregnant ewes were similar (p > 0.05; 2.8 +/- 0.3 to 3.7 +/- 0.2 fmol/mg) between Days 13 and 40 but were higher (p < 0.05) than in corpora lutea obtained from nonpregnant ewes on Days 10 (5.0 +/- 0.4 vs. 4.1 +/- 0.2 fmol/mg) and 15 (3.7 +/- 0.2 vs. 2.0 +/- 0.4 fmol/mg) post-estrus. Although concentrations of receptors for both PGF2 alpha and PGE2 were lowest in corpora lutea obtained from nonpregnant ewes on Day 15, this was not due to luteal regression since the weights and concentrations of progesterone in corpora lutea on Day 15 were not lower than those for corpora lutea obtained on Days 10 and 13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

19.
C W Weems 《Prostaglandins》1979,17(6):873-890
Prostaglandins F were measured in uterine and ovarian compartments and in uterine venous, ovarian arterial and venous and abdominal aorta plasma and the uptake of 3H-PGF2 alpha by ovarian compartments of 240 pseudopregnant rats with or without bilateral deciduomata in five experiments. Concentrations of PGF in deciduomal tissue, uterine venous plasma, ovarian arterial and venous plasma, corpora lutea, and remainder of the ovary and 3H-PGF2 alpha in the ovary were consistently as high or higher in pseudopregnant rats with deciduomata as in the endometrium, ovarian compartments, or samples of plasma from the same blood vessels of pseudopregnant rats without deciduomata. Levels of PGF were consistently 3 to 7 fold higher in uterine venous than in plasma from the abdominal aorta. It is concluded that extended luteal maintenance by deciduomal tissue is by some mechanism other than an inhibition of PGF synthesis by the uterus, transfer of PGF locally to the ovary, or uptake of PGF by the ovarian compartments.  相似文献   

20.
Uterine flushings from ewes on days 0, 3, 6, 9, 12 and 15 of the estrous cycle were analyzed for total protein content. Flushings from days 9, 12 and 15 had greater (P<.01) amounts of protein than those from 0, 3 and 6. Antisera to uterine fluids from ewes at day 10 to 12 or day 14 to 15 of pregnancy detected two uterine-specific antigens in uterine flushings at day 7, 11 and 15 but not at days 0 and 3 of the cycle. A third uterine antigen was also detected in kidney tissue extracts. All three antigens were present in endometrial extracts at each stage examined. Progesterone, or estrogen plus progesterone, administration to ovariectomized ewes induced the appearance of the two uterine-specific antigens. The third antigen was detectable even in ovariectomized ewes. No pregnancy-specific antigens were detected in flushings from days 7, 11 or 15 of gestation. The effect of pregnancy on endometrial protein synthesis was examined in vitro . No differences were seen in the incorporation of (3)H-leucine in day 11 pregnant or nonpregnant or in day 14 pregnant or nonpregnant endometrium. No differences in total uterine lumenal protein were observed. Endometrial secretions, obtained by conditioning media with endometrial explant cultures, were evaluated to assess their effect on protein synthesis in day 11 embryos cultured in vitro . No significant effects of endometrial secretions or serum were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号