首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C-reactive protein (CRP) is a pentameric oligoprotein composed of identical 23 kD subunits which can be modified by urea-chelation treatment to a form resembling the free subunit termed modified CRP (mCRP). mCRP has distinct physicochemical, antigenic, and biologic activities compared to CRP. The conditions under which CRP is converted to mCRP, and the molecular forms in the transition, are important to better understand the distinct properties of mCRP and to determine if the subunit form can convert back to the pentameric native CRP form. This study characterized the antigenic and conformational changes associated with the interconversion of CRP and mCRP. The rate of dissociation of CRP protomers into individual subunits by treatment in 8 M urea–10 mM EDTA solution was rapid and complete in 2 min as assayed by an enzyme-linked immunofiltration assay using monoclonal antibodies specific to the mCRP. Attempts to reconstitute pentameric CRP from mCRP under renaturation conditions were unsuccessful, resulting in a protein retaining exclusively mCRP characteristics. Using two-dimensional urea gradient gel electrophoresis, partial rapid unfolding of the pentamer occurred above 3 M urea, a subunit dissociation at 6 M urea, and further subunit unfolding at 6–8 M urea concentrations. The urea gradient electrophoresis results suggest that there are only two predominant conformational states occurring at each urea transition concentration. Using the same urea gradient electrophoresis conditions mCRP migrated as a single molecular form at all urea concentrations showing no evidence for reassociation to pentameric CRP or other aggregate form. The results of this study show a molecular conversion for an oligomeric protein (CRP) to monomeric subunits (mCRP) having rapid forward transition kinetics in 8 M urea plus chelator with negligible reversibility.  相似文献   

2.
A galactose-specific lectin has earlier been isolated from the seeds of Dolichos lablab in our laboratory by conventional protein purification methods. We now established conditions to bind the lectin on Sepharose-galactose gel in the presence of 1.5 M ammonium sulfate in Tris-buffered saline, pH 7.4. It can be specifically eluted with 0.3 M galactose. The purified lectin is a glycoprotein, binds to Con A, agglutinates erythrocytes, and has an apparent native molecular weight of 120 +/- 5 kDa. In SDS-PAGE under reducing conditions, it dissociates into two subunits of molecular mass (Mr) 31 and 29 kDa. Among a number of sugars tested for inhibitory activity of the lectin, galactose was found to be a potent inhibitor. Rabbit polyclonal antibody to the purified lectin specifically reacted with the lectin subunits in Western blot analysis and additionally, an antibody raised to the isolated 31 kDa subunit show reactivity with both the subunits. Amino terminal sequences of both the subunits are identical. The purified lectin is stable up to 40 degrees C with a pH optimum of 7.4. The lectin has a high content of acidic amino acids and lacks sulfur-containing amino acids. Chemical modification of the lectin with group-specific reagents indicates the possible role of histidine, lysine, and tyrosine residues in lectin activity.  相似文献   

3.
A method to separate phycoerythrin 545, isolated from the cryptomonad alga, Rhodomonaslens, into two subunits has been developed. The method uses no denaturants (urea, guanidine, detergent) but relies on dissociation of the dimeric protein and subsequent aggregation of the β subunit at pH 3.0. The absorption spectra and amino acid composition of the subunits are presented. The spectra of the α subunit was red-shifted relative to β in both pH 3.0 buffer and in acidic 8.0 M urea.  相似文献   

4.
W G Carter  M E Etzler 《Biochemistry》1975,14(23):5118-5122
The 110000 molecular weight Dolichos biflorus lectin is a glycoprotein composed of four subunits of approximately 27000 molecular weight with one methionine residue per subunit (Carter and Etzler, 1975b). Cyanogen bromide cleavage of the lectin yielded two fragments with approximate molecular weights of 15000 and 12000 as determined by electrophoresis on sodium dodecyl sulfate gels. Only the 15000 molecular weight fragment stained for carbohydrate with the periodic acid-Schiff stain. The two fragments were isolated, and their amino acid compositions were determined. The 15000 molecular weight fragment was identified as the amino terminal segment of the lectin subunits by NH2-terminal amino acid analysis. A glycopeptide with a minimum molecular weight of 1100 was isolated from the lectin by exhaustive Pronase digestion. Complete acid hydrolysis of the glycopeptide yielded aspartic acid, mannose, and N-acetylglucosamine in the ratio of 1:4-5:1-2. Partial acid hydrolysis of the glycopeptide produced a component which had an identical mobility with commercial N-acetylglucosaminylasparagine in high voltage paper electrophoresis. The data indicate that the carbohydrate unit of the lectin is bound to the amino terminal half of the subunits by a glycosylamine linkage between N-acetylglucosamine and asparagine.  相似文献   

5.
The seeds of winged bean, Psophocarpus tetragonolobus(L.)DC, contain two distinct groups of lectins characterized by different erythrocyte hemagglutinating specificities and isoelectric points. Three acidic lectins (I, II, and III) (pI approximately 5.5) were purified to apparent homogeneity by chromatography on Ultrogel AcA44 and SP-Sephadex C-25. These lectins are glycoproteins with relative molecular mass of 54,000. The total carbohydrate content of the acidic lectins was 7% and was comprised of mannose, N-acetylglucosamine, fucose, and xylose in amounts corresponding to 9.2, 4.8, 1.6, and 7.0 mol/54,000 g, respectively. Electrophoresis in dodecyl sulfate, in the presence and absence of 2-mercaptoethanol, gave a single subunit of apparent relative molecular mass 30-32,000, somewhat higher than expected from the native relative molecular mass. On isoelectric focusing in 8 M urea the subunits of the acidic lectins did not show any significant charge heterogeneity as found for the winged bean basic lectins. The acidic lectins have very similar amino acid compositions. They contain essentially no half-cystine, 1-2 methionine residues, and are rich in acidic and hydroxy amino acids. The amino-terminal sequences of lectins II and III were identical while the amino-terminal sequence of lectin I contained five differences in the first 25 residues; the acidic lectins showed extensive sequence homology with the winged bean basic lectins, the other one-chain subunit lectins and the beta subunit of the two-chain subunit legume lectins. The acidic lectins agglutinated trypsinized human (type A, B, AB, and O) erythrocytes but not trypsinized rabbit erythrocytes. They were inhibited by various D-galactose derivatives and D-galactose-containing disaccharides and trisaccharides. N-Acetylgalactosamine was the best inhibitor, and the specificity appears to be directed to beta-D-galactosides. However, compared with winged bean basic lectins and soybean lectin, the winged bean acidic lectins show a low affinity for the inhibitory sugars.  相似文献   

6.
Four major proteins designated DB1, DB2, DB3, and DB4 were isolated and characterized from the yam tuber Dioscorea batatas. The ratios of their yields were 20:50:20:10. DB1 was a mannose-binding lectin (20 kDa) consisting of 10-kDa subunits and was classified as the monocot mannose-binding lectin family. DB2, accounting for 50% of the total protein, was the storage protein, commonly called dioscorins consisting of a 31-kDa subunit. On the basis of amino acid sequence, DB2 was classified to be dioscorin A. DB3 was a maltose-binding lectin, having an apparent molecular mass of 120 kDa and composed of a 66-kDa subunit and two 31-kDa subunits (DB3S). The 66-kDa subunit was further composed of two 31-kDa subunits (DB3L) cross-linked by disulfide bonds. DB3L and DB3S (242 and 241 amino acid residues, respectively) were homologous with each other with 72% sequence identity. They showed a sequence homology to dioscorin B and dioscorin A from Dioscorea alata, with 90 and 93% identity, respectively, and to carbonic anhydrase from Arabidopsis thaliana with about 45% identity. DB3S had one intrachain disulfide bond located at Cys(28)-Cys(187), whereas DB3L had one interchain disulfide bond (Cys(40)-Cys(40)') in addition to the intrachain disulfide bond (Cys(28)-Cys(188)) to form a 66-kDa subunit. DB1 and DB3 agglutinated rabbit erythrocytes at 2.7 and 3.9 microg/ml, respectively. Despite the structural homology between DB2 and DB3, DB2 had no lectin activity. The 66-kDa subunit itself revealed the full hemagglutinating activity of DB3, indicating that DB3L but not DB3S was responsible for the activity. The hemagglutinating activity of DB3 required Ca(2+) ions and was exclusively inhibited by maltose and oligomaltoses (e.g. maltopentaose and maltohexaose) but not by d-glucose. DB3 could not be classified into any known plant lectin family. DB4 was a chitinase, homologous to an acidic chitinase from Dioscorea japonica. DB1, DB2, and DB3 did not show any activity of carbonic anhydrase, amylase, or trypsin inhibitor activity. These results show that two of the four major proteins isolated from the yam tubers D. batatas have unique lectin activities.  相似文献   

7.
Fish eggs are a rich source of lectins, the sugar-binding (glyco)proteins. In this paper we aim to further characterise perch roe lectins using several protein characterisation techniques including affinity chromatography and protein sequencing. Perch roe lectins are comprised of two subunits, subunit A and subunit B which have molecular weights of 12,400 and 12,000, respectively. These subunits form multiple aggregates AnBn in which the two subunits are present in differing ratios and, also as an `homogeneous' aggregates of one of the subunits An or Bn. Lectins An (designated A thereafter) and lectin Bn (designated B thereafter) formed by one type of subunit only (subunit A or B) were isolated in a pure state. Lectin B could also be isolated by spontaneous precipitation occurring during incubation of the perch roe extract at 4°C. Lectin B has a higher affinity for d-glucose than lectin A, whereas both lectins (A and B) have a similar affinity for l-fucose. The N-terminal region of subunit B showed the following amino acid sequence: EPAXPPWGTQFG-, whereas the N-terminus of subunit A was blocked and therefore could not be directly sequenced. Differences between subunits A and B were also found in amino acid composition. This unusual complexity and variability of perch roe lectins is likely to have physiological significance which, as yet, remains to be determined.  相似文献   

8.
Y Ozeki  T Matsui  M Suzuki  K Titani 《Biochemistry》1991,30(9):2391-2394
The complete amino acid sequence of a 11.5-kDa subunit of D-galactoside binding lectin purified from sea urchin (Anthocidaris crassispina) eggs is presented. The 105-residue sequence of the subunit was determined by analysis of the intact S-carbamoylmethylated protein and peptides generated by digestion with Achromobacter protease I or Staphylococcus aureus V8 protease. The lectin exists as a disulfide-linked homodimer of two subunits; the dimeric form is essential for hemagglutination activity. However, the monomeric form obtained by partial reduction retains the carbohydrate binding capacity. Neither Ca2+ nor SH reagent is essential for hemagglutination or carbohydrate binding. The sequence has no similarity to that of any known protein and apparently represents a new type of galactoside binding lectin.  相似文献   

9.
Two lectins have been isolated from leaves of Aloe arborescens Mill by salt precipitation, pH-dependent fractionation and gel filtration. One lectin (P-2) has a molecular weight of approximately 18,000, consists of two subunits (alphabeta) and contains more than 18% by weight of neutral carbohydrate. The smaller subunit (alpha) has a molecular weight of approximately 7,500 and the larger subunit (beta) a molecular weight of approximately 10,500. The other lectin (S-1) has a molecular weight of approximately 24,000, consists of two subunits (gamma2) with a molecular weight of approximately 12,000 and contains more than 50% by weight of neutral carbohydrate. An interesting feature of the amino acid compositions of these lectins is the high proportion of acidic amino acids, such as aspartic acid and glutamic acid, and the low proportion of methionine and histidine. S-1 has a strong hemagglutinating activity. On the other hand, P-2 has not only hemagglutinating activity but also mitogenic activity on lymphocytes, precipitate-forming reactivity with serum proteins, one of which is alpha2-macroglobulin, and complement C3 activating activity via the alternate pathway.  相似文献   

10.
A lectin from Delonix regia (DRL) seeds was purified by gel filtration on Sephadex G-100 followed by ion-exchange chromatography on diethylaminoethyl-Sepharose and reverse-phase high-performance liquid chromatography on a C18 column. Hemagglutinating activity was monitored using rat erythrocytes. DRL showed no specificity for human erythrocytes of ABO blood groups. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single protein in the presence of 0.1 M of dithiothreitol (DTT) and in nonreducing conditions. Native-PAGE showed that DRL is a monomer with a molecular mass of about 12 kDa, as determined by denaturing gel electrophoresis and gel filtration chromatography. An amino acid composition revealed the absence of cysteine residues, the presence of 1 mol methionine/mol protein and a high proportion of acidic amino acids and glycine. The N-terminal sequence of DRL was determined by Edman degradation, and up to 16 amino acid residues showed more than 90% homology with other lectins from the Leguminosae family. The optimal pH range for lectin activity was between pH 8.0 and 9.0, and the lectin was active up to 60°C. The lectin required Mn2+ for hemagglutinating activity and remained active after reduction with 0.1 M of DTT, but lost activity in the presence of 8 M of urea. Sodium metaperiodate had no effect on the activity of DRL.  相似文献   

11.
The molybdenum-iron protein of Azotobacter vinelandii nitrogenase was separated into two subunits of equal concentration by ion exchange chromatography on sulfopropyl (SP) Sephadex at pH 5.4 in 7 M urea. Better than 90% yield of each subunit was obtained on a preparative scale if the reduced carboxymethylated molybdenum-iron protein was incubated at 45 degrees C for 45 min prior to chromatography. Without the heating step low yields of the subunits were obtained. Although the amino acid compositions of the two subunits were very similar, the NH2-terminal sequences were completely different as determined by automated sequential Edman degradation. The sequence for the alpha subunit was NH2-Ser-Gln-Gln-Val-Asp-Lys-Ile-Lys-Ala-Ser-Tyr-Pro-Leu-Phe-Leu-Asp-Gln-Asp-Tyr- and for the beta subunit the sequence was NH2-Thr-Gly-Met-Ser-Arg-Glu-Glu-Val-Glu-Ser-Leu-Ile-Gln-Glu-Val-Leu-Glu-Val-Tyr-. Likewise the COOH-terminal sequences for the two subunits, as determined with carboxypeptidase Y, were tota-ly different. The sequence for the alpha subunit was -Leu-Arg-Val-COOH and that for the beta subunit was -Ile-(Phe, Glu)-Ala-Phe-COOH. Radioautographs of tryptic peptide maps were prepared for the molybdenum-iron protein and the two subunits which had been labeled at the cysteinyl residues with iodo[2-14C]acetic acid. These maps indicated that the two subunits had no cysteinyl peptides in common and that the cysteinyl residues were clustered in both subunits.  相似文献   

12.
Pig heart phosphoprotein phosphatase [phosphoprotein phosphophydrolase, EC 3.1.3.16] of Mr 224,000 was dissociated by gel-filtration on Sephacryl S-300, into an active subunit (alpha subunit) of Mr 31,000 and inactive subunits of higher molecular weight in the presence of 6 M urea. After the removal of urea, these subunits reassociated, forming two enzyme forms of Mr 237,000 (Form 1) and Mr 123,000 (Form 2). Form 2 was produced by association of the alpha subunit with an inactive subunit (beta subunit) of Mr 80,000, while Form 1 was formed by combination of the alpha subunit with a complex of inactive subunits which was eluted from a Sephadex G-150 column in fractions of molecular weight range greater than 80,000. The dissociation and reassociation of the subunits of Form 1 by the same urea method produced not only Form 1, but also significant amounts of Form 2, indicating that the inactive subunits of Form 1 were a complex of the beta subunit with another inactive subunit(s). The molecular parameters and other properties of Form 1 were very close to those of the original enzyme. By the conversion of Form 1 to Form 2, the activities of Form 1 towards phosphorylase a and glycogen synthetase b were enhanced 2-3 fold with no significant change in activity towards P-H1 histone or in response to the stimulatory effect of Mg(CH3COO)2 on the dephosphorylation of P-H2B histone. However, removal of the beta subunit from From 2 resulted in strong suppression of activity towards P-H1 histone and response to the salt effect with lesser effects on the activities of Form 2 towards phosphorylase a and glycogen synthase b.  相似文献   

13.
A single, low molecular weight protein is found after urea or guanidine hydrochloride (Gdn.HCl) treatment of empty capsids derived from bacteriophage f2. The final product of denaturation is apparently a monomer, existing as a random coil in larger than or equal to 4.0 M Gdn.HCl but in a less extended form in 8.0 M urea. In contrast, an 11 S protein component is isolated after treatment of the intact virus with 4.0 M Gdn.HCl (Zelazo & Haschemeyer, 1969), indicating that RNA plays a role in stabilizing larger subunits. Denaturation by Gdn.HCl occurs in two stages as measured by changes in CD and Stokes radius: dissociation that involves a structural perturbation of aromatic side chains, followed by a major, cooperative transition that evidently results in the loss of all noncovalent structure. Denaturation by urea appears to be a much less cooperative process that occurs in several steps over a wide range of urea concentration (1--7 M). In both urea and Gdn.HCl, dissociation into subunits begins at a lower concentration of denaturant than the major changes in conformation.  相似文献   

14.
The subunit structure, dissociation, and unfolding of the hemoglobin of the earthworm, Lumbricus terrestris, were investigated by light scattering molecular weight methods and changes in optical rotatory dispersion (at 233 nm) and absorption in the Soret region. Urea and the alkylureas, methyl-, ethyl-, propyl-, and butylurea, were employed as the reagents to cause both dissociation and unfolding of the protein. Analysis of the light scattering data suggests that the dissociation patterns as a function of hemoglobin concentration in the various dissociating solvents can be described in quantitative terms, either as an equilibrium mixture consisting of parent duodecamers and hexamers of 3 x 10(6) and 1.5 x 10(6) molecular weight (in 1-3 M urea, 1-2 M methyl- and ethylurea, and 1 M propylurea), as a mixture of hexamers and monomers, the latter with a molecular weight of 250000 (i.e., in 4 M urea), or as a mixture of all three species of duodecamers, hexamers, and monomers, seen in 2 M propylurea. Parallel studies by optical rotation and absorption measurements indicate that there is little or no unfolding of the subunits at urea and alkylurea concentrations where complete dissociation to hexamers and extensive dissociation to monomers can be achieved. Further splitting of the monomers (A subunits) to smaller fragments of one-third to one-quarter of the molecular weight of the monomers (B subunits) is seen in the presence of 7 and 8 M urea (pH 7) and in alkaline urea to propylurea solutions. Analysis of the dissociation data of duodecamers to monomers, based on equations used in studies of the urea and amide dissociation of human hemoglobin A from our laboratory, suggests few urea and alkylurea binding sites at the areas of hexamer contacts in the associated duodecameric form of L. terrestris hemoglobin. This suggests that hydrophobic interactions are not the dominant forces that govern the state of association of L. terrestris hemoglobin relative to polar and ionic interactions. The unfolding effects of the ureas, at concentrations above the dissociation transitions, are closely similar to their effects on other globular proteins, suggesting that hydrophobic interactions play an important role in the maintenance of the folded conformation of the subunits. Use of the Peller-Flory equation, with binding constants based on free energy transfer data of hydrophobic amino acid side chains and denaturation data used in previous denaturation studies, gave a relatively good acount of the observed denaturation midpoints obtained with the various ureas supporting these conclusions.  相似文献   

15.
The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3′ end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.  相似文献   

16.
cDNA cloning and in vitro synthesis of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin contains two structurally related subunits. A cDNA library was constructed using RNA isolated from D. biflorus seeds actively synthesizing the seed lectin. The library was expressed in Escherichia coli using a lambda Charon 16 vector, and lectin-specific antiserum was used to isolate a seed lectin cDNA. Hybridization of the D. biflorus seed lectin cDNA to RNA isolated from seeds actively producing both lectin subunits identifies a single-size RNA of 1100 bases. An oligodeoxyribonucleotide probe, constructed from an amino acid sequence common to both lectin subunits, detects the same size RNA. Translation of seed mRNA in vitro and immunoprecipitation of translation products using a lectin-specific antiserum yields a single polypeptide of slightly higher molecular mass than the largest seed lectin subunit. This seed lectin precursor is indistinguishable from a polypeptide synthesized from mRNA hybrid selected by the seed lectin cDNA. These data support the existence of a single polypeptide precursor for both subunit types of the D. biflorus seed lectin and suggest that differences between the subunit types arise by posttranslational processing.  相似文献   

17.
The chlorocruorin of the marine polychaete Eudistylia vancouveri has a molecular weight of 3.1-10(6) and a sedimentation coefficient (S020, w) of about 57 S at pH 8.0 in the presence of 0.01 M Mg2+. The quaternary structure of this pigment is unaffected by pH between 6.0 and 11.5 in the presence of 0.01 M Mg2+ whereas in 0l01 M EDTA, the pigment begins to dissociate above pH 9.0 into smaller submultiples. The chlorocruorin can be converted into subunits with molecular weights of about 14 000-15 000 and 30 000 as determined by sodium dodecyl sulfate-gel electrophoresis and 14 000-15 000 as measured by gel chromatography of the carboxy-methylated derivative in 8 M urea, 0.1 M 2-mercaptoethanol, or by sedimentation equilibrium in 6 M guanidine-HCl and 0.1 M 2-mercaptoethanol. The pigment contains 0.212 +/- 0.008% iron corresponding to 1 g atom iron per 26 300 g chlorocruorin. The amino acid composition of this pigment is reported. The subunit structure of Eudistylia chlorocruorin and the polymeric annelid hemoglobins are similar in many respects.  相似文献   

18.
Lectin has been isolated and purified from Lathyrus sativus using ammonium sulphate precipitation followed by affinity chromatography. The molecular weight as determined by HPLC was found to be 42kD. The lectin is a tetramer, consisting of two types of subunits of which the heavier subunit consists of 2 polypeptides of mol wt of about 21 kD and 16 kD while the smaller subunits consists of two polypeptides of about 5kD as revealed by SDS-PAGE. The most potent sugar inhibitor of the Lathyrus lectin was found to be α-methyl D-mannoside. The N-terminal amino acid sequence was similar to that of pea lectin sequence.  相似文献   

19.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

20.
A new galactose-specific lectin has been purified from the extracts of Trichosanthes dioica seeds by affinity chromatography on cross-linked guar gum. The purified lectin (T. dioica seed lectin, TDSL) moved as a single symmetrical peak on gel filtration on Superose-12 in the presence of 0.1 M lactose with an M(r) of 55 kDa. In the absence of ligand, the movement was retarded, indicating a possible interaction of the lectin with the column matrix. In SDS-PAGE, in the presence of beta-mercaptoethanol, two non-identical bands of M(r) 24 and 37 kDa were observed, whereas in the absence of beta-mercaptoethanol, the lectin yielded a single band corresponding to approximately 55,000 Da, indicating that the two subunits of TDSL are connected by one or more disulfide bridges. TDSL is a glycoprotein with about 4.9% covalently bound neutral sugar. Analysis of near-UV CD spectrum by three different methods (CDSSTR, CONTINLL, and SELCON3) shows that TDSL contains 13.3% alpha-helix, 36.7% beta-sheet, 19.4% beta-turns, and 31.6% unordered structure. Among a battery of sugars investigated, TDSL was inhibited strongly by beta-d-galactopyranosides, with 4-methylumbelliferyl-beta-d-galactopyranoside being the best ligand. Chemical modification studies indicate that tyrosine residues are important for the carbohydrate-binding and hemagglutinating activities of the lectin. A partial protection was observed when the tyrosine modification was performed in the presence of 0.2 M lactose. The tryptophan residues of TDSL appear to be buried in the protein interior as they could not be modified under native conditions, whereas upon denaturation with 8 M urea two Trp residues could be selectively modified by N-bromosuccinimide. The subunit composition and size, secondary structure, and sugar specificity of this lectin are similar to those of type-2 ribosome inactivating proteins, suggesting that TDSL may belong to this protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号