首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
L929 cells were incubated with tumor necrosis factor-alpha (TNF-alpha) in the presence or absence of various inhibitors of arachidonic acid metabolism. The addition of either hydrocortisone or nordihydroguaiaretic acid (NDGA) decreased the cytotoxic effect of TNF-alpha but exogenously added arachidonate or linoleate, indomethacin and eicosatetraynoic acid (ETYA) were without effect. While it was found that TNF-alpha stimulated arachidonic acid release, no metabolites of this fatty acid could be evidenced. Cytotoxicity of TNF-alpha could also be decreased by the addition of either cholera or pertussis toxin. These results suggest that a GTP-binding protein is involved in the cytotoxic action of TNF-alpha. Arachidonic acid, released possibly by a phospholipase A2, might also play a role, but probably not via its conversion to known metabolites.  相似文献   

2.
Arachidonic acid (AA) generated by cytosolic phospholipase A2 (cPLA2) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA2-deficient MCF-7S1 cells expressing ectopic cPLA2 or cPLA2-deficient immortalized murine embryonic fibroblasts, we showed that cPLA2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damage-associated inflammation.  相似文献   

3.
Arachidonic acid when added simultaneously with the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe) inhibits the ability of the latter to initiate several but not all of its effects on rabbit peritoneal neutrophils. Stimulated neutrophil aggregation, calcium uptake, and increases in the steady state level of exchangeable calcium are all inhibited by 1-10 microM arachidonic acid. The binding of f-Met-Leu-Phe and the parameters of intracellular calcium redistribution (calcium efflux and changes in the steady state level of exchangeable calcium in the absence of extracellular calcium) and of stimulated sodium uptake are, on the other hand, unaffected by the same concentrations of arachidonic acid. Arachidonic acid, the saturated analog of arachidonic acid, was found not to inhibit f-Met-Leu-Phe-stimulated aggregation and calcium uptake. Arachidonic acid, therefore, in addition to its well-described agonist properties, also possesses antagonist activities toward rabbit neutrophils. These results add a new level of complexity to the study of the role of arachidonic acid in cell activation.  相似文献   

4.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

5.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid–soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   

6.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid-soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   

7.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin E1 alpha (6-oxo-PGE1 alpha) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10(-5) M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature in vivo compared with platelets in vitro.  相似文献   

8.
Protection from tumor necrosis factor cytotoxicity by protease inhibitors   总被引:6,自引:0,他引:6  
Tumor necrosis factor (TNF) is cytocidal for human and murine cells when protein synthesis is inhibited by cycloheximide, but some protease inhibitors completely protect these cells from TNF cytotoxicity. Inhibitors of chymotrypsin-like proteases are active at lower concentrations than inhibitors of trypsin-like proteases. Both irreversible inhibitors, such as alkylating compounds, and reversible inhibitors, such as substrates of proteases, protect cells from the cytocidal activity of TNF. This protection is most effective when the cells are pretreated with these inhibitors before addition of TNF. When the protease inhibitors are removed, the cells gradually lose resistance to TNF cytotoxicity. The inhibitors do not interfere with the functioning of TNF-receptor complexes, since SK-MEL-109 melanoma cells treated with a protease inhibitor synthesize a TNF-induced protein. These findings suggest that a protease in involved in the cytocidal action of TNF.  相似文献   

9.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin F(6-oxo-PGE) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10−5 M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature compared with platelets .  相似文献   

10.
Inhibition of the metabolism of arachidonic acid by the epoxygenase (cytochrome P-450) pathway with the inhibitor ketoconazole results in excessive cell swelling upon exposure to hyposmolality instead of the rapid and complete regulatory volume decrease (RVD) normally observed. NaCl entry from bathing solutions to cell interior was shown to cause this swelling, with Na influx occurring across the basolateral membrane and electrically silent Cl influx across the apical membrane. Ion substitution experiments show that the KCl efflux mediating RVD was unimpaired by ketoconazole, but was overwhelmed by the NaCl influx. Measurements of transepithelial fluid flux, Cl concentration, osmolality and pH showed that gallbladders treated with ketoconazole transiently secreted fluid rather than the normal absorption. We conclude that inhibition of arachidonic acid metabolism does not directly affect RVD by Necturus gallbladder, but that blockade of the epoxygenase pathway can have a profound influence on NaCl entry into gallbladder epithelial cells.The authors wish to thank Mr. Goeffrey Habermacher for his able assistance in the early phases of this work.  相似文献   

11.
Preincubation of rat liver cells (the C-9 cell line) for 25 min with phenylarsine oxide at levels ranging from 0.06 to 0.6 microM amplifies prostaglandin I2 production when subsequently stimulated by platelet activating factor, lysine vasopressin, bradykinin, thapsigargin, and the Ca2+ ionophore, A-23187, but not that stimulated by exogenous arachidonic acid. The amplification is decreased after preincubation for 25 min with 1.8 microM phenylarsine oxide. Preincubation of mouse lymphoma cells (the WEHI-3 cell line) with phenylarsine oxide at levels ranging from 0.06 to 1.8 microM for 60 min does not affect prostaglandin E2 levels but inhibits leukotriene B4 and C4 production stimulated by the Ca(2+)-ionophore, A-23187. Amplification of prostaglandin production by phenylarsine oxide is reversed 100 times more effectively by 2,3-dimercaptopropanol than by 2-mercaptoethanol. Deesterification of lipids appears to be regulated positively in rat liver cells and leukotriene production negatively in mouse lymphoma cells by phosphorylation of tyrosine.  相似文献   

12.
Chronic administration of mood stabilizers to rats down‐regulates the brain arachidonic acid (AA) cascade. This down‐regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E2 concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1‐14C]AA was infused intravenously for 5 min, arterial plasma was collected and high‐energy microwaved brain was analyzed. CLZ increased incorporation coefficients and rates Jin,i of plasma unesterified AA into brain phospholipids i, while decreasing plasma unesterified but not esterified AA. These effects disappeared after washout. Thus, CLZ and OLZ similarly down‐regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down‐regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease.  相似文献   

13.
The effects of tumor necrosis factor alpha (TNF-α) on arachidonic acid (AA) metabolism were investigated by prelabeling the human osteoblastic osteosarcoma cell line, G292, with [3H]AA. TNF-α differentially stimulates cyclooxygenase and lipoxygenase pathways of AA metabolism in a dose response manner in the cells. The highest concentration of TNF-α (10−8 M) significantly increased the cyclooxygenase pathway, with prostaglandin E2 (PGE2) being a major product. However, at the lowest concentration (10−10 M) of TNF-α, 15-hydroxyeicosatetraenoic acid (HETE) production was significantly increased, with no significant effects on the other identifiable products. When the concentration of TNF-α was increased to 10−9 M leukotriene B4 (LTB4), 15-, 12-, and 5-HETE were significantly increased. The calcium ionophore A23187 (10−6 M) significantly increased 15-HETE production, without significantly affecting cyclooxygenase metabolites. However, a combination of TNF-α (10−8 M) and A23187 (10−6 M) caused an inhibitory effect on each agent-induced PGE2 or 15-HETE production.  相似文献   

14.
To gain insight into the mechanism of formation of chromosomal aberrations by the tumor promoter phorbolmyristate acetate (PMA) in human lymphocytes, we investigated the effect of antioxidants and inhibitors of arachidonic acid metabolism. Among the antioxidants bovine erythrocyte CuZn superoxide dismutase, glutathione peroxidase, mannitol (a scavenger of hydroxyl radicals), butylated hydroxytoluene and butylated hydroxyanisole were anticlastogenic while catalase and dimethylfuran (a scavenger of singlet oxygen) were inactive. These results show that the induction of aberrations by PMA occurs via indirect action, i.e. the intermediacy of superoxide and hydroxyl radicals. The following inhibitors of arachidonic acid metabolism were strongly anticlastogenic: the cyclo-oxygenase inhibitors indomethacin and flufenamic acid and the lipoxygenase inhibitor BN1015. Imidazole, nordihydroguaiaretic acid BN 1048 and 5,8,11,14-eicosatetraynoic acid were moderately active. The inhibitor of phospholipase A2, fluocinolone acetonide, was also anticlastogenic.

We conclude that the oxidative metabolism of arachidonic acid is involved in the induction of chromosomal aberrations by PMA in human lymphocytes. However, because of the limited selectivity of these drugs, it is not yet possible to identify unambiguously the step(s) in the arachidonic acid cascade responsible for PMA clastogenicity.  相似文献   


15.
The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO.  相似文献   

16.
Human isolated monocytes possess low levels of procoagulant activity, which was stimulated 10-30 fold by brief (2 hr) exposure to 10 micrograms/ml endotoxin. This activity was expressed in normal or factor XII-deficient plasma, but lost in plasma deficient in factors X or VII, indicating that it was due to thromboplastin. The stimulation of monocyte thromboplastin by endotoxin was inhibited in a dose-dependent manner by two phospholipase A2 inhibitors, 4-bromophenacyl bromide and quinacrine, and by two lipoxygenase inhibitors, eicosatetraynoic acid and nordihydroguaiaretic acid. Two cyclooxygenase inhibitors, aspirin and indomethacin, prevented endotoxin-induced increases in thromboxane B2 production but had no effect on thromboplastin production. These results suggest that a component in the sequence of lipid deacylation, arachidonic acid release, and metabolism via lipoxygenase may mediate the stimulation of monocyte thromboplastin activity by endotoxin.  相似文献   

17.
Keratin 8 and 18 (K8/18) are the major components of intermediate filament (IF) proteins of simple or single-layered epithelia. Recent data show that normal and malignant epithelial cells deficient in K8/18 are nearly 100 times more sensitive to tumor necrosis factor (TNF)-induced cell death. We have now identified human TNF receptor type 1 (TNFR1)-associated death domain protein (TRADD) to be the K18-interacting protein. Among IF proteins tested in two-hybrid systems, TRADD specifically bound K18 and K14, type I (acidic) keratins. The COOH-terminal region of TRADD interacted with the coil Ia of the rod domain of K18. Endogenous TRADD coimmunoprecipitated with K18, and colocalized with K8/18 filaments in human mammary epithelial cells. Overexpression of the NH2 terminus (amino acids 1-270) of K18 containing the TRADD-binding domain as well as overexpression of K8/18 in SW13 cells, which are devoid of keratins, rendered the cells more resistant to killing by TNF. We also showed that overexpressed NH2 termini of K18 and K8/18 were associated with endogenous TRADD in SW13 cells, resulting in the inhibition of caspase-8 activation. These results indicate that K18 may sequester TRADD to attenuate interactions between TRADD and activated TNFR1 and moderate TNF-induced apoptosis in simple epithelial cells.  相似文献   

18.
Modulation of arachidonic acid metabolism by Rous sarcoma virus   总被引:6,自引:0,他引:6       下载免费PDF全文
Arachidonic acid (C20:4) metabolites were released constitutively from wild-type Rous sarcoma virus-transformed chicken embryo fibroblasts (CEF). 3H-labeled C20:4 and its metabolites were released from unstimulated and uninfected CEF only in response to stimuli such as serum, phorbol ester, or the calcium ionophore A23187. High-pressure liquid chromatography analysis showed that the radioactivity released from [3H]arachidonate-labeled transformed cells was contained in free arachidonate and in the cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha; no lipoxygenase products were identified. The release of C20:4 and its metabolites from CEF infected with pp60src deletion mutants was correlated with serum-independent DNA synthesis and with the expression of the mRNA for 9E3, a gene expressed in Rous sarcoma virus-transformed cells which has homology with several mitogenic and inflammatory peptides. 3H-labeled C20:4 release was not correlated with p36 phosphorylation, which argues against a role for this protein as a phospholipase A2 inhibitor. CEF infected with other oncogenic viruses encoding a tyrosine kinase also released C20:4, as did CEF infected with viruses that contained mos and ras; however, infection with a crk-containing virus did not result in stimulation of 3H-labeled C20:4 release, suggesting that utilization of this signaling pathway is specific for particular transformation stimuli.  相似文献   

19.
Coronary flow was recorded from spontaneously beating isolated perfused hearts of rats and guinea pigs. Arachidonic acid (AA), in single bolus doses, produced a fast short lasting coronary constriction followed by a slow developing but persisting vasodilation. These reactions (biphasic type) were characteristic of the guinea pig heart. In about 50% of the rat hearts the vasoconstrictor action predominated while the biphasic response was obtained in the rest of the experiments. Pretreatment of rats with aspirin prevented the responses to AA in the isolated heart. The administration of reduced glutathione (GSH) (about 1 mM to the rat or 0.5-0.75 mM to the guinea pig hearts) produced a marked development and (or) enhancement of the vasodilator action of AA. Repeated or single large doses of AA produced a change of pattern of responses from biphasic to constrictor type; the addition of GSH restored the vasodilator phase. Since GSH directs the endoperoxide metabolism towards the synthesis of prostaglandin E2 (PGE2), we postulate that the coronary dilatation of resistance vessels produced by AA would be due to a great extent to PGE2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号