首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic ischemia/reperfusion injury occurs in the clinical situations including liver transplantation. FK506 and cyclosporin A (CsA) are reported to be hepatotrophic agents in addition to being a powerful immunosuppressive agent. Studies were performed to determine whether the drugs influence a mitochondrial dysfunction under the hypoxic conditions in primary culture model of rat hepatocytes. The Anaeropack system was used for cell culture to create a hypoxia. Cells were treated with FK506 or CsA under the normoxic and hypoxic conditions. Hypoxia markedly decreased intracellular adenosine 5'-triphosphate (ATP) contents and the ketone body ratio (KBR, acetoacetate/beta-hydroxybutyrate) in culture medium as compared with normoxia. FK506 prevented the decreases of ATP contents and the KBR. In contrast, CsA had no effect on either ATP contents or the KBR. FK506, but not CsA, increased the KBR under the normoxic conditions. Under the hypoxic conditions, heat shock protein 70 (Hsp70) was detected after reoxygenation. FK506 enhanced the induction of Hsp70, but CsA again had no effect on Hsp70 induction. These results indicate that FK506 protects the hypoxia injury in part by preventing the mitochondrial dysfunction in concert with the enhancement of heat shock response in hepatocytes.  相似文献   

2.
Elevated level of cellular lipid peroxidation can increase the incidence of vascular disease. The mechanism by which ketosis causes accelerated cellular damage and vascular disease in diabetes is not known. This study was undertaken to test the hypothesis that elevated levels of ketone bodies increase lipid peroxidation in endothelial cells. Human umbilical venous endothelial cells (HUVEC) were cultured for 24 h at 37oC with ketone bodies (acetoacetate, β-hydroxybutyrate). Acetoacetate, but not β-hydroxybutyrate, caused an increase in lipid peroxidation and growth inhibition in cultured HUVEC. To determine whether ketone bodies generate oxygen radicals, studies using cell-free buffered solution were performed. They showed a significant superoxide dismutase (SOD) inhibitable reduction of cytochrome C by acetoacetate, but not by β-hydroxybutyrate, suggesting the generation of superoxide anion radicals by acetoacetate. Additional studies show that Fe2+ potentiates oxygen radical generation by acetoacetate. Thus, elevated levels of ketone body acetoacetate can generate oxygen radicals and cause lipid peroxidation in endothelial cells, providing a possible mechanism for the increased incidence of vascular disease in diabetes.  相似文献   

3.
The influence of hepatic metallothionein (MT) and zinc (Zn) on glycolysis was investigated in primary cultures of mouse hepatocytes prepared from MT-normal (+/+) and MT-null (−/−) mice. In MT +/+ mice, a close relationship was observed between the Zn concentration in the incubation medium (10–150 μM), increased MT levels in the cells, and increased glycolysis (accumulation of lactate + pyruvate) over 24 h, with significant effects seen at physiological levels of Zn (10–25 μM). Hepatocytes from MT −/− mice had significantly lower basal rates of glycolysis and demonstrated increased glycolysis only at Zn concentrations of 50 μM or greater. The lactate: pyruvate ratio was higher in the MT +/+ hepatocytes. The oxidation of endogenous fatty acid (accumulation of the ketone bodies, 3-hydroxybutyrate and acetoacetate) was initially greater in the MT +/+ hepatocytes, although only MT −/− hepatocytes showed increased ketone body production in response to Zn. The 3-hydroxybutyrate: acetoacetate ratio was higher in the MT +/+ hepatocytes and increased with increasing Zn concentrations. Intracellular Zn accumulation was 60% greater in the MT +/+ hepatocytes, with approximately 80% of the extra Zn associated with MT. The results implicate MT-associated Zn rather than increased intracellular Zn per se in the regulation of hepatic carbohydrate metabolism.  相似文献   

4.
The ketone bodies acetoacetate and d-3-hydroxybutyrate are found in the haemolymph, the fat body, and the flight muscles of the adult desert locust. Acetoacetate is the major ketone body in the haemolymph and the flight muscles, but in the fat body d-3-hydroxybutyrate usually predominates. The concentration of acetoacetate in the haemolymph varies with age, and increases during starvation and flight and also after the injection of corpus cardiacum homogenate; it is little affected by stress and there are no differences between the sexes. Ketone bodies appear to be formed in the fat body and are oxidized by the fat body, the flight muscles, and the testes. All the tissues oxidize acetoacetate much more readily than d-3-hydroxybutyrate, and the flight muscles of fed locusts oxidize acetoacetate much more readily than the fat body or the testes. In starved locusts the ability of the fat body and the flight muscles to oxidize ketone bodies is greatly reduced, but utilization by the testes remains normal. Thus the flight muscles appear to be the major consumers of ketone bodies in fed locusts, and the testes the major consumers in starved locusts. It is suggested that ketone bodies are formed in the fat body during the mobilization of the triglyceride lipid reserves, and are either oxidized by the fat body or transported by the haemolymph to the flight muscles and other tissues to be used as a respiratory fuel.  相似文献   

5.
Mitochondrial respiration is inhibited in cells exposed to hypoxia, and the oxidation of NADH to NAD(+) is blocked. As a result, oxidation reactions requiring NAD(+) are blocked, disrupting cellular metabolism. We studied the influence of methylene blue, which oxidizes NADH, on hypoxic damage to primary cultures of rat hepatocyte monolayers. During hypoxic treatment of hepatocytes, aspartate aminotransferase leaked out of the cells into the culture medium. However, addition of methylene blue to the medium repressed the hypoxic leakage of the enzyme. The exposure of hepatocytes to hypoxia decreased the acetoacetate/beta-hydroxybutyrate ratio which reflects the redox state of the cell. The level of the acetoacetate/beta-hydroxybutyrate ratio in hypoxic cells was increased by the addition of methylene blue. These results suggest that methylene blue protects against hypoxic injury due to its oxidation of NADH.  相似文献   

6.
The effect of various factors on hepatic mitochondrial ketogenesis was investigated in the rat. A comparison of three different incubation media revealed that bicarbonate ion inhibited the rate of ketone body production and decreased the ratio of 3-hydroxybutyrate/acetoacetate. The addition of 0.8 mm calcium caused significant inhibition of ketogenesis from both octanoate (40–50%) and palmitate (25–30%) and no change in the ratio of 3-hydroxybutyrate/acetoacetate. In the presence of components of the malate/aspartate shuttle, the inhibition by calcium was 80% or more with both substrates. Experimental alteration of the respiratory state of the mitochondria from state 3 to state 4 was associated with an enhanced rate of ketogenesis. The addition of ketone bodies themselves had marked effects on the rate of ketone body production. Increasing amounts of exogenously added acetoacetate were accompanied by increasing rates of total ketone body production reflecting enhanced 3-hydroxybutyrate synthesis. In the presence of added 3-hydroxybutyrate, there was striking inhibition of ketogenesis. Rotenone, which prevents oxidation of NADH2 via the electron transport chain, almost completely inhibited ketone body synthesis. This inhibition was partially overcome by the addition of acetoacetate which regenerates NAD+ from NADH2 during conversion to 3-hydroxybutyrate. These observations provide evidence for additional sites of metabolic control over hepatic ketogenesis.  相似文献   

7.
A possible mechanism for the anti-ketogenic action of alanine in the rat   总被引:6,自引:6,他引:0  
1. The anti-ketogenic effect of alanine has been studied in normal starved and diabetic rats by infusing l-alanine for 90min in the presence of somatostatin (10μg/kg body wt. per h) to suppress endogenous insulin and glucagon secretion. 2. Infusion of alanine at 3mmol/kg body wt. per h caused a 70±11% decrease in [3-hydroxybutyrate] and a 58±9% decrease in [acetoacetate] in 48h-starved rats. [Glucose] and [lactate] increased, but [non-esterified fatty acid], [glycerol] and [3-hydroxybutyrate]/[acetoacetate] were unchanged. 3. Infusion of alanine at 1mmol/kg body wt. per h caused similar decreases in [ketone body] (3-hydroxybutyrate plus acetoacetate) in 24h-starved normal and diabetic rats, but no change in other blood metabolites. 4. Alanine [3mmol/kg body wt. per h] caused a 72±9% decrease in the rate of production of ketone bodies and a 57±8% decrease in disappearance rate as assessed by [3-14C]acetoacetate infusion. Metabolic clearance was unchanged, indicating that the primary effect of alanine was inhibition of hepatic ketogenesis. 5. Aspartate infusion at 6mmol/kg body wt. per h had similar effects on blood ketone-body concentrations in 48h-starved rats. 6. Alanine (3mmol/kg body wt. per h) caused marked increases in hepatic glutamate, aspartate, malate, lactate and citrate, phosphoenolpyruvate, 2-phosphoglycerate and glucose concentrations and highly significant decreases in [3-hydroxybutyrate] and [acetoacetate]. Calculated [oxaloacetate] was increased 75%. 7. Similar changes in hepatic [malate], [aspartate] and [ketone bodies] were found after infusion of 6mmol of aspartate/kg body wt. per h. 8. It is suggested that the anti-ketogenic effect of alanine is secondary to an increase in hepatic oxaloacetate and hence citrate formation with decreased availability of acetyl-CoA for ketogenesis. The reciprocal negative-feedback cycle of alanine and ketone bodies forms an important non-hormonal regulatory system.  相似文献   

8.
Enhanced ketone body uptake by perfused skeletal muscle in trained rats   总被引:1,自引:0,他引:1  
Training effect on exercise-induced hyperketonemia was investigated in normal post-absorptive rats subjected to running exercise on a treadmill. Furthermore, rat hindlimb-muscle perfusion was performed to elucidate the mechanism of the training effect. A medium intensity prolonged exercise (running at 15 m/min for 90 min) caused a greater increase in plasma 3-hydroxybutyrate than in acetoacetate both during and after the exercise. Training with medium-intensity exercise (15 m/min) for 90 min 3 times per week for 14 wks or 28 wks caused 1) a reduction of the increase in plasma ketone body (mainly 3-hydroxybutyrate), free fatty acids and glucagon induced by the exercise, and 2) an increase in ketone body (mainly acetoacetate) uptake by perfused skeletal muscle. The present study demonstrates that the reduction of exercise-induced hyperketonemia by prolonged training is caused by increased ketone body utilization in skeletal muscle, and suggested that inhibition of hepatic ketogenesis might also participate in this reduction.  相似文献   

9.
This work investigates the effect of alloxan-induced short-term diabetes (24 h) on D-3-hydroxybutyrate metabolism at physiological and non-physiological concentrations of the ketone body in the isolated non-working perfused rat heart. Also the effect of insulin (2 mU.ml−1) on D-3-hydroxybutyrate metabolism was investigated in hearts from normal and diabetic rats. The rates of D-3-hydroxybutyrate utilization and oxidation and of acetoacetate production were proportional to D-3-hydroxybutyrate concentration. The utilization of D-3-hydroxybutyrate showed saturation kinetics in hearts from normal and diabetic rats, in the presence and absence of insulin. Acute short-term diabetes augmented D-3-hydroxybutyrate utilization and oxidation at 1.25 and 2.5 mM DL-3-HB, with no significant effect at higher concentrations, but increased acetoacetate production at all investigated concentrations. In hearts from normal rats, insulin enhanced D-3-hydroxybutyrate utilization and oxidation at 2.5, 5, and 10 mM DL-3-HB, but no effect was observed at the lowest (1.25 mM) and highest (16 mM) DL-3-HB concentrations. Insulin had no effect on D-3-hydroxybutyrate metabolism in hearts from diabetic rats. No significant effect of insulin on the rate of acetoacetate production in normal and diabetic states was observed.  相似文献   

10.
Different methods of assessing ketone body concentrations in blood and plasma of ketoacidotic patients have been compared. We confirmed that Ketostix reacts strongly with acetoacetate, giving a useful range of 0 to 10 mM for plasma acetoacetate, that acetone reacts weakly, and that 3-hydroxybutyrate does not react at all. Plasma Ketostix readings correlated only moderately well with enzymatically determined whole-blood acetoacetate. All samples giving a + + + reaction contained more than 1·6 mM acetoacetate while only 4 out of 21 samples showing 0 contained more than 0·4 mM. Comparison of Ketostix readings with total blood ketone body content showed poor correlation. One reason for this was the large variation in the ratio of 3-hydroxybutyrate to acetoacetate in ketoacidosis; another was that often Ketostix had been stored in such a way that they had become damp, which impairs their reliability. If the Ketostix reading and estimation of the blood pH show a discrepancy we suggest that an enzymatic assay should be used to determine the ketone bodies and lactate.  相似文献   

11.
A sensitive spectrophotometric assay for 3-hydroxybutyrate determination in biological samples is described. Linearity between the amount of 3-hydroxybutyrate and ΔA546 was obtained in the range of 0.3 to 4.0 nmol 3-hydroxybutyrate/assay. The same method is applicable for acetoacetate determination after its enzymatic reduction. The assay proved to be useful for the study of the subcellular distribution of ketone bodies in isolated liver cells. The assay procedure is adequate to measure the concentration of ketone bodies in 5-mg and 20μl samples from liver and blood, respectively.  相似文献   

12.
The utilisation of glucose, glutamine, acetoacetate and D-3-hydroxybutyrate were investigated over 72 h of incubation of rat splenic lymphocytes, with and without concanavalin A. Lymphocytes consumed both ketone bodies; acetoacetate was consumed preferentially. The ketone bodies reduced glucose consumption by 30-50%, but had little effect on lactate production. Glutamine uptake was concentration dependent up to 4 mM, and consumption was increased in the presence of concanavalin. Glutamine stimulated glucose consumption and lactate production in both resting and activated cells. Complete oxidation contributed 65% of glucose-derived ATP, but less than 40% of glutamine-derived ATP. Glutamine metabolism makes only a minor contribution to lymphocyte ATP generation.  相似文献   

13.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

14.
REMOVAL AND UTILIZATION OF KETONE BODIES BY THE BRAIN OF NEWBORN PUPPIES   总被引:4,自引:1,他引:3  
The removal of circulating ketone bodies by the brain was investigated in 0- to 8-day-old puppies under pentobarbital anaesthesia. Of the arterial acetoacetate (AcAc) and β-hydroxybutyrate (βOHB), 24 and 30 per cent, respectively, were removed by the brain. There was a direct correlation between the arterial concentrations of either AcAc or βOHB and the A-V difference of the respective ketone body across the brain. When a continuous infusion of Na-dl -3-hydroxybutyrate [3-14T] was administered for more than 2 h, labelling of both phospholipids and free cholesterol was consistently observed in all six areas of the brain that were sampled. We conclude that the removal and utilization of ketones is of physiological importance in the brain of newborn animals.  相似文献   

15.
An automated, spectro-photometric determination of blood acetoacetate and β-hydroxybutyrate was developed with a Gilford 3500 autoanalyzer. The stability of ketone bodies was studied in different conditions. An immediate precipitation with 0.6 M perchloric acid and cooling the sample effectively prevent the loss of acetoacetate from samples during transport to the laboratory (at 4°C a 6 % loss of acetoacetate was noted during 24 h). Freezing the sample makes it practically stable (less than 2 % loss of acetoacetate per week during a study lasting 2 months). At room temperature (20°C) the sample’s acetoacetate was instable and disappeared with a rate of 6 % per h. β-hydroxybutyrate was stable in precipitated samples. Because the precipitation also retains the sample’s glucose, 3 main parameters for the indication of ketosis could be analyzed automatically from the same sample with a total capacity of 40 samples in 2½ h.  相似文献   

16.
Summary Isolated hepatocytes from rat liver in primary culture rapidly lost viability under hypoxic conditions. In the presence of glycine, L-alanine or L-serine loss of viability under hypoxic conditions was greatly retarded. Glycine and L-serine already showed significant protection from hypoxic injury at a concentration of 0.1 mM; at 10 mM, all three amino acids offered almost complete protection. Beside these standard amino acids, 1-aminocyclopropane-1-carboxylic acid (ACPC) and sarcosine significantly decreased hypoxic injury of the hepatocytes, although to a lesser extent. Other amino acids tested provided only slight protection or had no effect on hypoxic injury of the hepatocytes. In the presence of the protective amino acids neither the ATP content nor the lactate production of the hypoxic hepatocytes were significantly affected. The addition of glycine, L-alanine and L-serine led to marked membrane alterations (blebs). These alterations, however, occurred without loss of viability and were reversible upon reoxygenation after up to 4 h of hypoxia.Abbreviations LDH lactate dehydrogenase - ACPC 1-amino-cyclopropane-1-carboxylic acid - HEPES 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid  相似文献   

17.
Effects of Ketone Bodies on Astrocyte Amino Acid Metabolism   总被引:5,自引:1,他引:4  
Abstract: The effects of acetoacetate and 3-hydroxybutyrate on glial amino acid metabolism were studied in primary cultures of astrocytes. The exchange of nitrogen among amino acids was measured with 15N as a metabolic probe and gas chromatography-mass spectrometry as a tool with which to quantify isotope abundance. Addition of either acetoacetate or 3-hydroxybutyrate (5 m M ) to the incubation medium did not alter the initial rate of appearance of [15N]glutamate in the glia, but it did inhibit transamination of glutamate to [15N]aspartate. Addition of acetoacetate also inhibited formation of [2-15N]glutamine, but 3-hydroxybutyrate had a stimulatory effect. The presence in the medium of sodium acetate (5 m M ) was also associated with diminished production of [15N]aspartate and [2-15N]glutamine with [15N]glutamate as precursor. Studies with [2-15N]glutamine as precursor indicated that treatment of the astrocytes with ketone bodies did not alter flux through the glutaminase pathway. Nor did the presence of the ketone bodies reduce significantly the flux of nitrogen from [15N]GABA to [2-15N]glutamine when the former species served as a metabolic tracer. The concentration of internal citrate increased in the presence of acetoacetate, 3-hydroxybutyrate, and acetate. Studies with purified sheep brain glutamine synthetase showed that citrate inhibited this enzyme. These findings are considered in terms of the known anticonvulsant effect of a ketogenic diet.  相似文献   

18.
Possible effects of adrenaline, noradrenaline, vasopressin, and angiotensin II to increase 14CO2 production from [1-14C]oleate were examined in hepatocytes from fed L-triiodothyronine (T3)-treated or control rats. Rates of 14CO2 production were decreased and rates of ketogenesis increased in hepatocytes from T3-treated rats. These changes were accompanied by a marked shift of the 3-hydroxybutyrate:acetoacetate concentration ratio towards acetoacetate. Rates of glucose and lactate release were decreased. Whereas the Ca2+-mobilizing hormones increased 14CO2 production from [1-14C]oleate by 64-84% with hepatocytes from control rats, they increased 14CO2 production from [1-14C]oleate by on 24-32% with hepatocytes from T3-treated rats. The magnitude of the response to the Ca2+-mobilizing hormones in hepatocytes from T3-treated rats was increased by the addition of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to the incubation medium (increases of 52-88%). In the presence of 3-mercaptopicolinate, the 3-hydroxybutyrate:acetoacetate concentration ratio in hepatocytes from fed, T3-treated rats was similar to that in hepatocytes from control rats in the absence of 3-mercaptopicolinate. The results demonstrate that hyperthyroidism per se does not lead to a loss of sensitivity, in terms of oleate oxidation, either to the catecholamines or to vasopressin and angiotensin II. The impaired ability of hepatocytes from T3-treated rats to respond to these hormones is a consequence of decreased net glycolytic flux or a more oxidized mitochondrial redox state.  相似文献   

19.
Our previous study suggested that calpain isoforms played an important role in retinal ganglion cell death induced by ischemia-reperfusion in rats [Curr. Eye Res. 21 (2000) 571]. The purpose of the present study was to further establish the direct involvement of calpain in hypoxia-induced damage by administering calpain inhibitor SJA6017 to oxygen-starved, cultured retinas. Retinas were incubated in RPMI medium with glucose and 95% O2/5% CO2 to supply sufficient oxygen for retinal cell survival. To induce a hypoxic condition, retinas were incubated with 95% N2/5% CO2. Leakage of LDH in the medium was measured to assess retinal cell damage. Activation of calpain and proteolysis of calpain substrate alpha-spectrin were analyzed by casein zymography and immunoblotting. Large amounts of LDH leaked into the medium from retinas under hypoxic conditions for 12 h, and SJA6017 significantly reduced LDH leakage. Caseinolytic activity of mu- and m-calpains decreased with hypoxia for 5 and 12 h, suggesting calpain activation followed by autolytic degradation. SJA6017 partially inhibited decreased calpain activities. Proteolysis of 230 kDa alpha-spectrin to 150 and 145 kDa breakdown products was observed in retinas with hypoxia. SJA6017 completely inhibited production of the 145 kDa breakdown product and partially inhibited production of the 150 kDa breakdown product. These results confirm the direct involvement of calpains in retinal cell damage induced by hypoxia in vitro.  相似文献   

20.
Cerebellar granule neurons were incubated with or without glucose (3 mM) in the presence or absence of citrate (20 mM) using normoxic and/or hypoxic incubation conditions. During 4 h of hypoglycemia and also during hypoxia plus hypoglycemia, citrate increased lactate dehydrogenase (LDH) leakage from the cells and decreased mitochondrial activity, the latter was also the case in the presence of glucose. After 24 h of hypoglycemia, however, citrate decreased LDH leakage slightly, possibly due to its metabolism in the tricarboxylic acid cycle under these conditions. It should be noted that during mild hypoxia plus hypoglycemia a reduced LDH leakage was observed when compared to hypoglycemia alone. The 4 h low oxygen period did protect the neurons also during the 20 h re-oxygenation period. The present study might indicate that incubation of brain cell cultures in an atmosphere of air (30% oxygen) and 5% CO2, which is used in most laboratories, can be toxic and that oxygen concentration should be lowered considerably to mimic conditions in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号