首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial pathogenicity to plants and animals has evolved through an arms race of attack and defense. Key players are bacterial effector proteins, which are delivered through the type III secretion system and suppress basal defenses . In plants, varietal resistance to disease is based on recognition of effectors by the products of resistance (R) genes . When recognized, the effector or in this scenario, avirulence (Avr) protein triggers the hypersensitive resistance reaction (HR), which generates antimicrobial conditions . Unfortunately, such gene-for-gene-based resistance commonly fails because of the emergence of virulent strains of the pathogen that no longer trigger the HR . We have followed the emergence of a new virulent pathotype of the halo-blight pathogen Pseudomonas syringae pv. phaseolicola within leaves of a resistant variety of bean. Exposure to the HR led to the selection of strains lacking the avirulence (effector) gene avrPphB (or hopAR1), which triggers defense in varieties with the matching R3 resistance gene. Loss of avrPphB was through deletion of a 106 kb genomic island (PPHGI-1) that shares features with integrative and conjugative elements (ICElands) and also pathogenicity islands (PAIs) in diverse bacteria . We provide a molecular explanation of how exposure to resistance mechanisms in plants drives the evolution of new virulent forms of pathogens.  相似文献   

2.
BACKGROUND: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue. RESULTS: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae. CONCLUSIONS: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.  相似文献   

3.
Using a model plant Nicotiana benthamiana, we have demonstrated that initial calcium uptake in response to the HR (hypersensitive response)-causing pathogen Pseudomonas syringae pv syringae 61 is followed by net calcium efflux initiated at about 12 h after the bacterial challenge and sustained for at least 48 h. Our data suggest that calcium not only acts as an important second messenger in the activation of resistance responses but may also be a downstream mediator of later cell death acceleration and completion of the defense reaction. Accordingly, we propose that the existing model of HR should be amended to include a PM Ca(2+) ATP pump as an important component of the HR to pathogens in plants.  相似文献   

4.
The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is required for bacterial pathogenicity on plants and elicitation of the hypersensitive response (HR), a programmed cell death (PCD) that occurs on resistant plants. Cosmid pHIR11 enables non-pathogens to elicit an HR dependent upon the TTSS and the effector HopPsyA. We used pHIR11 to determine that effectors HopPtoE, avirulence AvrPphEPto, AvrPpiB1Pto, AvrPtoB, and HopPtoF could suppress a HopPsyA-dependent HR on tobacco and Arabidopsis. Mixed inoculum and Agrobacterium-mediated transient expression experiments confirmed that suppressor action occurred within plant cells. These suppressors, with the exception of AvrPpiB1Pto, inhibited the expression of the tobacco pathogenesis-related (PR) gene PR1a. DC3000 suppressor mutants elicited an enhanced HR consistent with these mutants lacking an HR suppressor. Additionally, HopPtoG was identified as a suppressor on the basis of an enhanced HR produced by a hopPtoG mutant. Remarkably, these proteins functioned to inhibit the ability of the pro-apoptotic protein, Bax to induce PCD in plants and yeast, indicating that these effectors function as anti-PCD proteins in a trans-kingdom manner. The high proportion of effectors that suppress PCD suggests that suppressing plant immunity is one of the primary roles for DC3000 effectors and a central requirement for P. syringae pathogenesis.  相似文献   

5.
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.  相似文献   

6.
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing nutrient uptake and pathogen adaptation to the environment of the host plant. We demonstrate that the type III effector HopAM1 (formerly known as AvrPpiB) enhances the virulence of a weak pathogen in plants that are grown under drought stress. This is the first report of a type III effector that aids pathogen adaptation to water availability in the host plant. Expression of HopAM1 makes transgenic Ws-0 Arabidopsis hypersensitive to abscisic acid (ABA) for stomatal closure and germination arrest. Conditional expression of HopAM1 in Arabidopsis also suppresses basal defenses. ABA responses overlap with defense responses and ABA has been shown to suppress defense against P. syringae pathogens. We propose that HopAM1 aids P. syringae virulence by manipulation of ABA responses that suppress defense responses. In addition, host ABA responses enhanced by type III delivery of HopAM1 protect developing bacterial colonies inside leaves from osmotic stress.  相似文献   

7.
A cosmid clone isolated from a genomic library of Pseudomonas syringae pv. syringae 61 restored to all Tn5 mutants of this strain studied the ability to elicit the hypersensitive response (HR) in tobacco. Cosmid pHIR11 also enabled Escherichia coli TB1 to elicit an HR-like reaction when high levels of inoculum (10(9) cells per ml) were infiltrated into tobacco leaves. The cosmid, which contains a 31-kilobase DNA insert, was mobilized by triparental matings into Pseudomonas fluorescens 55 (a nonpathogen that normally causes no plant reactions), P. syringae pv. syringae 226 (a tomato pathogen that causes the HR in tobacco), and P. syringae pv. tabaci (a tobacco pathogen that causes the HR in tomato). The plant reaction phenotypes of all of the transconjugants were altered. P. fluorescens(pHIR11) caused the HR in tobacco and tomato leaves and stimulated an apparent proton influx in suspension-cultured tobacco cells that was indistinguishable from the proton influx caused by incompatible pathogenic pseudomonads. P. syringae pv. tabaci(pHIR11) and P. syringae pv. syringae 226(pHIR11) elicited the HR rather than disease symptoms on their respective hosts and were no longer pathogenic. pHIR11 was mutagenized with TnphoA (Tn5 IS50L::phoA). One randomly chosen mutant, pHIR11-18, no longer conferred the HR phenotype to P. fluorescens. The mutation was marker-exchanged into the genomes of P. syringae pv. syringae strains 61 and 226. The TnphoA insertions in the two pseudomonads abolished their ability to elicit any plant reactions in all plants tested. The results indicate that a relatively small portion of the P. syringae genome is sufficient for the elicitation of plant reactions.  相似文献   

8.
A new allele of the coronatine-insensitive locus (COI1) was isolated in a screen for Arabidopsis thaliana mutants with enhanced resistance to the bacterial pathogen Pseudomonas syringae. This mutant, designated coi1-20, exhibits robust resistance to several P. syringae isolates but remains susceptible to the virulent pathogens Erisyphe and cauliflower mosaic virus. Resistance to P. syringae strain PstDC3000 in coi1-20 plants is correlated with hyperactivation of PR-1 expression and accumulation of elevated levels of salicylic acid (SA) following infection, suggesting that the SA-mediated defense response pathway is sensitized in this mutant. Restriction of growth of PstDC3000 in coi1-20 leaves is partially dependent on NPR1 and fully dependent on SA, indicating that SA-mediated defenses are required for restriction of PstDC3000 growth in coi1-20 plants. Surprisingly, despite high levels of PstDC3000 growth in coi1-20 plants carrying the salicylate hydroxylase (nahG) transgene, these plants do not exhibit disease symptoms. Thus resistance to P. syringae in coi1-20 plants is conferred by two different mechanisms: (i) restriction of pathogen growth via activation of the SA-dependent defense pathway; and (ii) an SA-independent inability to develop disease symptoms. These findings are consistent with the hypotheses that the P. syringae phytotoxin coronatine acts to promote virulence by inhibiting host defense responses and by promoting lesion formation.  相似文献   

9.
10.
Two classes of bacterial genes are involved in the elicitation of the plant hypersensitive response (HR) in resistant plants: hrp genes and avr genes. hrp genes have been shown to be involved in the production and secretion of a new class of bacterial virulence/avirulence proteins, including harpin of Erwinia amylovora and harpinPss of Pseudomonas syringae . The ability of avr genes in the elicitation of the HR/resistance is dependent on functional hrp genes. The relationships between harpins and avr gene products are not known. This study investigates the plant genes induced by harpins and the effect of avr genes on the expression of such plant genes. A tobacco gene highly induced by harpins was isolated by a subtractive hybridization method. Induction of hin1 by P.s. pv. syringae 61 (Pss61) was found to be dependent on functional bacterial hrp genes. P. fluorescens (a saprophyte) or hrp mutants defective in the Hrp secretion pathway did not induce hin1 significantly. A hin1 -related gene in tomato cv. Rio Grande-PtoR was found to be rapidly induced by P. s. pv. tomato T1 (a virulent bacterium on Rio Grande-PtoR) containing the avrPto gene, which mediates the elicitation of the HR/resistance in a Pto plant resistance gene-dependent manner. The induction of hin1 by bacteria correlates with production of harpins in planta . The putative open reading frame of hin1 encodes a novel protein of 221 amino acids. The data suggest that harpins and the avrPto -mediated signal induce a common plant gene in the elicitation of the HR.  相似文献   

11.
Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and 196T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.  相似文献   

12.
Systemic acquired resistance (SAR) is an inducible plant defense response and is effective against a broad spectrum of pathogens. Biological induction of SAR usually follows plant cell death resulting from the plant hypersensitive response (HR) elicited by an avirulent pathogen or from disease necrosis caused by a virulent pathogen. The elicitation of the HR and disease necroses by pathogenic bacteria is controlled by hrp genes. Previously, it was shown that the Pseudomonas syringae 61 (Pss61) HrpZPss protein (formally harpinPss) elicited the HR in plants. In this study, it is shown that HrpZPss induced SAR in cucumber to diverse pathogens, including the anthracnose fungus ( Colletotrichum lagenarium ), tobacco necrosis virus and the bacterial angular leaf spot bacterium ( P. s. pv. lachrymans ). A hrpH mutant of Pss61, which is defective in the secretion of HrpZPss and, possibly, other protein elicitors, failed to elicit SAR. Pathogenesis-related (PR) proteins, including peroxidase, β-glucanase and chitinases, were induced in cucumber plants inoculated with Pss61, C. lagenarium or HrpZPss. The induction patterns of PR proteins by HrpZPss and Pss61 were the same, but were different from that induced by C. lagenarium . Interestingly, the hrpH mutant induced two of the three identified PR proteins, despite its failure to induce SAR. These results suggest that proteinaceous elicitors, such as HrpZPss, that traverse the bacterial Hrp secretion pathway are involved in the biological induction of SAR and that at least some PR proteins can be induced by bacterial factors that are not controlled by hrp genes.  相似文献   

13.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

14.
Erwinia amylovora is the causal agent of fire blight, a disease affecting members of subfamily Maloideae. In order to analyze mechanisms leading to compatible or incompatible interactions, early plant molecular events were investigated in two genotypes of Malus with contrasting susceptibility to fire blight, after confrontation with either E. amylovora or the incompatible tobacco pathogen Pseudomonas syringae pv. tabaci. Many defense mechanisms, including generation of an oxidative burst and accumulation of pathogenesis-related proteins, were elicited in both resistant and susceptible genotypes by the two pathogens at similar rates and according to an equivalent time course. This elicitation was linked with the functional hypersensitive reaction and pathogenicity (hrp) cluster of E. amylovora, because an hrp secretion mutant did not induce such responses. However, a delayed induction of several genes of various branch pathways of the phenylpropanoid metabolism was recorded in tissues of the susceptible genotype challenged with the wild-type strain of E. amylovora, whereas these genes were quickly induced in every other plant-bacteria interaction, including interactions with the hrp secretion mutant. This suggests the existence of hrp-independent elicitors of defense in the fire blight pathogen as well as hrp-dependant mechanisms of suppression of these nonspecific inductions.  相似文献   

15.
Pseudomonas syringae pv. syringae as causal agent of floral buds necrosis, has been isolated from kiwifruit plants cv. Hayward in Italy. The pathogen has been identified on the basis of morphological, biochemical and physiological features and also on the basis of pathogenicity. Symptoms, similar to those caused by Pseudomonas viridiflava —browning and darkening on floral buds, have been observed on kiwifruit plants in a wide area in the North of Latium region (central Italy), in Viterbo province.  相似文献   

16.
17.
Pseudomonas syringae pv. syringae , like many plant pathogenic bacteria, secretes a 'harpin' protein that can elicit the hypersensitive response (HR), a defensive cellular suicide, in non-host plants. The harpin-encoding hrpZ gene is located in an operon that also encodes Hrp secretion pathway components and is part of the functional cluster of hrp genes carried on cosmid pHIR11 that enables saprophytic bacteria like Escherichia coli and Pseudomonas fluorescens to elicit the HR in tobacco leaves. We have constructed functionally non-polar hrpZ deletion mutations, revealing that HrpZ is necessary for saprophytic bacteria carrying pHIR11 to elicit a typical HR, whereas it only enhances the elicitation activity of P. s. syringae . Partial deletion mutations revealed that the N-terminal 153 amino acids of HrpZ can enable E. coli MC4100-(pHIR11) to elicit a strong HR. hrpZ subclone products comprising the N-terminal 109 amino acids and C-terminal 216 amino acids, respectively, of the 341 amino acid protein were isolated and found to elicit the HR. P. fluorescens (pHIR11 hrmA  ::Tn phoA ) mutants do not elicit the HR, but cell fractionation and immunoblot analysis revealed that they produce and secrete wild-type levels of HrpZ. Therefore, elicitor activity resides in multiple regions of HrpZ, P. syringae produces elicitor(s) in addition to HrpZ, and HrpZ is essential but not sufficient for HR elicitation by saprophytic bacteria carrying pHIR11.  相似文献   

18.
A previous mutant screen identified Arabidopsis dnd1 and dnd2 "defense, no death" mutants, which exhibit loss of hypersensitive response (HR) cell death without loss of gene-for-gene resistance. The dnd1 phenotype is caused by mutation of the gene encoding cyclic nucleotide-gated (CNG) ion channel AtCNGC2. This study characterizes dnd2 plants. Even in the presence of high titers of Pseudomonas syringae expressing avrRpt2, most leaf mesophyll cells in the dnd2 mutant exhibited no HR. These plants retained strong RPS2-, RPM1-, or RPS4-mediated restriction of P. syringae pathogen growth. Mutant dnd2 plants also exhibited enhanced broad-spectrum resistance against virulent P. syringae and constitutively elevated levels of salicylic acid, and pathogenesis-related (PR) gene expression. Unlike the wild type, dnd2 plants responding to virulent and avirulent P. syringae exhibited elevated expression of both salicylate-dependent PR-1 and jasmonate and ethylene-dependent PDF1.2. Introduction of nahG+ (salicylate hydroxylase) into the dnd2 background, which removes salicylic acid and causes other defense alterations, eliminated constitutive disease resistance and PR gene expression but only weakly impacted the HR- phenotype. Map-based cloning revealed that dnd2 phenotypes are caused by mutation of a second CNG ion channel gene, AtCNGC4. Hence, loss of either of two functionally nonredundant CNG ion channels can cause dnd phenotypes. The dnd mutants provide a unique genetic background for dissection of defense signaling.  相似文献   

19.
20.
Volatile, low-molecular weight terpenoids have been implicated in plant defenses, but their direct role in resistance against microbial pathogens is not clearly defined. We have examined a possible role of terpenoid metabolism in the induced defense of Arabidopsis thaliana plants against leaf infection with the bacterial pathogen Pseudomonas syringae. Inoculation of plants with virulent or avirulent P. syringae strains induces the emission of the terpenoids (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), beta-ionone and alpha-farnesene. While the most abundant volatile, the C16-homoterpene TMTT, is produced relatively early in compatible and incompatible interactions, emission of both beta-ionone and alpha-farnesene only increases in later stages of the compatible interaction. Pathogen-induced synthesis of TMTT is controlled through jasmonic acid (JA)-dependent signaling but is independent of a functional salicylic acid (SA) pathway. We have identified Arabidopsis T-DNA insertion lines with defects in the terpene synthase gene TPS4, which is expressed in response to P. syringae inoculation. The tps4 knockout mutant completely lacks induced emission of TMTT but is capable of beta-ionone and alpha-farnesene production, demonstrating that TPS4 is specifically involved in TMTT formation. The tps4 plants display at least wild type-like resistance against P. syringae, indicating that TMTT per se does not protect against the bacterial pathogen in Arabidopsis leaves. Similarly, the ability to mount SA-dependent defenses and systemic acquired resistance (SAR) is barely affected in tps4, which excludes a signaling function of TMTT during SAR. Besides P. syringae challenge, intoxication of Arabidopsis leaves with copper sulfate, a treatment that strongly activates JA biosynthesis, triggers production of TMTT, beta-ionone, and alpha-farnesene. Taken together, our data suggest that induced TMTT production in Arabidopsis is a by-product of activated JA signaling, rather than an effective defense response that contributes to resistance against P. syringae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号