首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
N Nakajima  H Ozeki  Y Shimura 《Cell》1981,23(1):239-249
  相似文献   

2.
3.
4.
5.
6.
The nucleotide sequence of Bacillus subtilis tRNA genes   总被引:11,自引:2,他引:9       下载免费PDF全文
Clones carring Bacillus subtilis tRNA genes were isolated from a lambda 816 library. A recombinant phage lambda 816-BS83 which was hybridized effectively with unfractionated tRNA probes contained a 3-kb fragment. By a Southern's blot analysis, it was found that tRNA genes were located in Eco RI-Hinc II region of this fragment. Sequence determination revealed the presence of a cluster of four tRNA genes in this region. The gene organization was as follows: tDNALys-9bp-tDNAGlu-81bp-tDNAAsp-30bp-tDNAPhe. The RNA sequences expected from tDNALys and tDNAPhe were identical with the reported RNA sequences. Two tRNA genes, tDNALys and tDNAAsp encoded the CCA sequence of 3'-terminal region, but the other two, tDNAGlu and tDNAPhe did not. A promoter-like sequence which corresponds to the sigma 55-recognition site was found in a region about 100bp upstream from tDNALys.  相似文献   

7.
A human opal suppressor tRNA gene and pseudogene   总被引:14,自引:0,他引:14  
  相似文献   

8.
From a recombinant lambda phage, we have determined a 387 bp sequence containing a mouse lysine tRNA gene. The putative lys tRNA (anticodon UUU) differs from rabbit liver lys tRNA at five positions. The flanking regions of the mouse gene are not generally homologous to published human and Drosophila lys tRNA genes. However, the mouse gene contains a 14 bp region comprising 13 A-T base pairs, 30-44 bp from the 5' end of the coding region. Cognate A-T rich regions are present in human and Drosophila genes. The coding region is flanked by two 11 bp direct repeats, similar to those associated with alu family sequences. The sequence was determined by a "walking" protocol that employs, as a novel feature, iodinated single-stranded M13 probes to identify M13 subclones which contain sequences partially overlapping and contiguous to an initially determined sequence. The probes can also be used to screen lambda phage and in Southern and dot blot experiments.  相似文献   

9.
10.
11.
12.
13.
14.
In the rat, DNA carrying a cluster of the genes for tRNAAsp, tRNAGly, and tRNAGlu, aligned in that order, is repeated about 10 times. Seven DNA clones corresponding to the independent repeating units were isolated from a rat gene library. Nucleotide sequence analysis of these clones revealed the presence of a fourth tRNA gene, the gene for tRNALeu, in the cluster. The tRNALeu gene is located about 600 base pairs (bp) upstream from the tRNAAsp gene and its polarity differs from those of the other three tRNA genes. Among the repeating units, the nucleotide sequence of tRNALeu is conserved to a relatively high degree.  相似文献   

15.
In the present study, modified nucleotides in the B. subtilis tRNA(Trp) cloned and hyperexpressed in E. coli have been identified by TLC and HPLC analyses. The modification patterns of the two isoacceptors of cloned B. subtilis tRNA(Trp) have been compared with those of native tRNA(Trp) from B. subtilis and from E. coli. The modifications of the A73 mutant of B. subtilis tRNA(Trp), which is inactive toward its cognate TrpRS, were also investigated. The results indicate the formation of the modified nucleotides S4U8, Gm18, D20, Cm32, i6A/ms2i6A37, T54 and psi 55 on cloned B. subtilis tRNA(Trp). This modification pattern resembles the pattern of E. coli tRNA(Trp), except that m7G is missing from the cloned tRNA(Trp), probably on account of its short extra loop. In contrast, the pattern departs substantially from that of native B. subtilis tRNA(Trp). Therefore, the cloned B. subtilis tRNA(Trp) has taken on largely the modification pattern of E. coli tRNA(Trp) despite the 26% sequence difference between the two species of tRNA, gaining in particular the Cm32 and Gm18 modifications from the E. coli host. A notable difference between the isoacceptors of the cloned tRNA(Trp) was seen in the extent of modification of A37, which occurred as either the hypomodified i6A or the hypermodified ms2i6A form. Surprisingly, base substitution of guanosine by adenosine at position 73 of the cloned tRNA(Trp) has led to the abolition of the 2'-O-methylation modification of the remote G18 residue.  相似文献   

16.
The N(6)-(isopentenyl)adenosine (i(6)A) modification of some tRNAs at position A37 is found in all kingdoms and facilitates codon-specific mRNA decoding, but occurs in different subsets of tRNAs in different species. Here we examine yeasts' tRNA isopentenyltransferases (i.e., dimethylallyltransferase, DMATase, members of the Δ(2)-isopentenylpyrophosphate transferase, IPPT superfamily) encoded by tit1(+) in Schizosaccharomyces pombe and MOD5 in Saccharomyces cerevisiae, whose homologs are Escherichia coli miaA, the human tumor suppressor TRIT1, and the Caenorhabditis elegans life-span gene product GRO-1. A major determinant of miaA activity is known to be the single-stranded tRNA sequence, A36A37A38, in a stem-loop. tRNA(Trp)(CCA) from either yeast is a Tit1p substrate, but neither is a Mod5p substrate despite the presence of A36A37A38. We show that Tit1p accommodates a broader range of substrates than Mod5p. tRNA(Trp)(CCA) is distinct from Mod5p substrates, which we sort into two classes based on the presence of G at position 34 and other elements. A single substitution of C34 to G converts tRNA(Trp)(CCA) to a Mod5p substrate in vitro and in vivo, consistent with amino acid contacts to G34 in existing Mod5p-tRNA(Cys)(GCA) crystal structures. Mutation of Mod5p in its G34 recognition loop region debilitates it differentially for its G34 (class I) substrates. Multiple alignments reveal that the G34 recognition loop sequence of Mod5p differs significantly from Tit1p, which more resembles human TRIT1 and other DMATases. We show that TRIT1 can also modify tRNA(Trp)(CCA) consistent with broad recognition similar to Tit1p. This study illustrates previously unappreciated molecular plasticity and biological diversity of the tRNA-isopentenyltransferase system of eukaryotes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号