首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental Regulation of β-Thymosins in the Rat Central Nervous System   总被引:4,自引:2,他引:2  
HPLC analysis of guanidinium hydrochloride extracts of neonatal and adult rat brain revealed a polypeptide that is present in high concentration in the immature nervous system, but whose levels decline dramatically in the adult. This polypeptide has been isolated and its complete amino acid sequence determined by gas-phase Edman degradation following specific chemical and enzymatic cleavages. The molecule is identified as thymosin beta 10, a member of a multigene family that encodes a structurally conserved series of small acidic polypeptides of uncertain function. Thymosin beta 10 is present in the developing nervous system as early as embryonic day 9. Levels subsequently increase to peak values between embryonic day 15 and postpartum day 3, before falling to adult values (about a 20-fold reduction) by postpartum day 14. The elevated levels of thymosin beta 10 in fetal and neonatal brain correlate with high levels of thymosin beta 10 mRNA, whereas the low values of the polypeptide in the adult and juvenile are mirrored by an approximate 15-fold reduction in specific mRNA. In comparison, the levels of thymosin beta 4 polypeptide, a homologue of thymosin beta 10, only decline by about 20% during the same developmental period. However, the mRNA encoding thymosin beta 4 is elevated in fetal brain, and its levels decrease approximately four-fold to a stable value around the time of birth. The reason for this discrepancy between thymosin beta 4 protein and mRNA levels is unknown. Thymosin beta 10 can also be detected by HPLC in fetal liver, where levels are approximately 5% of those in brain. In liver, thymosin beta 10 also declines following birth. It is concluded that beta-thymosin expression (as measured by steady-state mRNA and polypeptide levels) is both up- and down-regulated during different phases of maturation of the mammalian nervous system.  相似文献   

2.
Gangliosides were partially purified from goldfish brain and fractionated by DEAE Fractogel column chromatography. Each fraction was then analyzed by HPTLC and also by HPLC after conversion of the gangliosides to 2,4-dinitrophenylhydrazides. The tetrasialoganglioside GQ1c was found to constitute more than 50% of the total gangliosides. Gangliosides in smaller quantities were also tentatively identified. These included GT1b, GT1c, GT2, GT3, GD1a, and several others. By using this information, the amounts of individual gangliosides in various regions of goldfish central nervous system were compared. Although all areas of brain examined contained similar concentrations of gangliosides, with GQ1c as the predominant component, retina and optic nerve contained significantly lower concentrations of GQ1c, and GM3 was the major component.  相似文献   

3.
The activities of 5'-nucleotidase, 2'-nucleotidase, alkaline phosphatase, and acid phosphatase were measured in rat and autopsied human brains. The four phosphatases in the rat brain showed little change in activity after death. The activities of adenosine-producing enzymes were compared in various parts of rat and human brains. When phosphatase activity was measured at pH 7.5, 5'-nucleotidase showed the highest activity in the most parts of the brain. The activity of 2'-nucleotidase and that of nonspecific phosphatase were almost the same at pH 7.5. However, higher phosphatase activity was observed in all parts of the brain when nonspecific phosphatase activity was measured at pH 10.0 or 5.5. High specific activity of 5'-nucleotidase in the brain was detected in the membranous components, especially in the synaptic membranes. The activity of 2'-nucleotidase was distributed in the soluble and synaptosomal fractions. The highest activity of both alkaline and acid phosphatases was recovered in the crude mitochondrial fraction, with the highest specific activity in the microsomal fraction. Phosphatase activity was distributed widely in the rat brain. The activity of 5'-nucleotidase was high in the medulla oblongata, thalamus, and hippocampus, but low in the peripheral nerve, spinal cord, and occipital lobe. The activity of 2'-nucleotidase was high in the vermis and frontal lobe. The highest acid and alkaline phosphatase activities were detected in the frontal lobe and in the olfactory bulb, respectively. The distribution of the four phosphatases in the autopsied human brain was similar to that in the rat brain. The highest 5'-nucleotidase activity was observed in the temporal lobe and thalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: Gonadectomy of male rats led to a threefold increase of 3α-hydroxysteroid dehydrogenase (3α-HSDH) activity in pituitary homogenates that could be completely reversed by chronic administration of estradiol or 5α-dihydrotestosterone (DHT). 3α-HSDH was found to be distributed mainly between the 10,000 g and 100,000 g sediments from whole homogenates. The microsomal enzyme activity showed a substantial specificity for NADH whereas the cytosolic enzyme (100,000 g supernatant) demonstrated a slight preference for NADPH. The changes in V max found in homogenates following gonadectomy and gonadal steroid administration reflected changes in NADH- linked activity of the microsomal, but not the cytosolic enzyme. Estradiol-induced suppression of NADH-linked 3α-HSDH activity in pituitary homogenates from gonadectomized rats of either sex was accompanied by a similar suppression of NADPH-linked 5α-reductase activity and a marked decrease of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release. In the ovariectomized rat chronic administration of nonsteroidal antiestrogens had strong estrogenic effects on 3α-HSDH activity and LH release, but not on 5α-reductase activity and FSH release. In the gonadectomized male rat, which was much less sensitive to intrinsic estrogenicity of the antiestrogens tested, nafoxidine completely blocked estradiol-induced suppression of 5α-reductase activity and FSH release and partially antagonized suppression of LH release. The trans -isomeric, substituted triphenylethylenes, tamoxifen, and enclomiphene, as well as nitromifene (mixture of trans and cis isomers) were able partially to counteract estradiol-induced suppression of 5α-reductase, but not 3α-HSDH activity. It is concluded that estradiol action on pituitary 5α-reductase, but not 3α-HSDH activity, involves an estrogen receptor mechanism.  相似文献   

5.
The regional distribution of neuropeptide Y (NPY) immunoreactivity and receptor binding was studied in the porcine CNS. The highest amounts of immunoreactive NPY were found in the hypothalamus, septum pellucidum, gyrus cinguli, cortex frontalis, parietalis, and piriformis, corpus amygdaloideum, and bulbus olfactorius (200-1,000 pmol/g wet weight). In the cortex temporalis and occipitalis, striatum, hippocampus, tractus olfactorius, corpus mamillare, thalamus, and globus pallidus, the NPY content was 50-200 pmol/g wet weight, whereas the striatum, colliculi, substantia nigra, cerebellum, pons, medulla oblongata, and medulla spinalis contained less than 50 pmol/g wet weight. The receptor binding of NPY was highest in the hippocampus, corpus fornicis, corpus amygdaloideum, nucleus accumbens, and neurohypophysis, with a range of 1.0-5.87 pmol/mg of protein. Intermediate binding (0.5-1.0 pmol/mg of protein) was found in the septum pellucidum, columna fornicis, corpus mamillare, cortex piriformis, gyrus cinguli, striatum, substantia grisea centralis, substantia nigra, and cerebellum. In the corpus callosum, basal ganglia, corpus pineale, colliculi, corpus geniculatum mediale, nucleus ruber, pons, medulla oblongata, and medulla spinalis, receptor binding of NPY was detectable but less than 0.5 pmol/mg of protein. No binding was observed in the bulbus and tractus olfactorius and adenohypophysis. In conclusion, immunoreactive NPY and its receptors are widespread in the porcine CNS, with predominant location in the limbic system, olfactory system, hypothalamoneurohypophysial tract, corpus striatum, and cerebral cortex.  相似文献   

6.
Abstract: Carboxy- and amino-terminal specific neurotensin antisera have been characterized and used to determine the nature of neurotensin-like immunoreactivity in the rat central nervous system. Using these antisera, together with the separation of neurotensin-like immunoreactivity on reversephase HPLC columns, it is clear that the majority of rat central nervous system neurotensin-like immunoreactivity is indistinguishable from the synthetic tridecapeptide. However, smaller amounts of carboxy- and amino-terminal neurotensin-like immunoreactivity were detected, which may correspond to carboxy- and amino-terminal fragments of neurotensin. In addition, using the amino-terminal directed neurotensin antiserum, a detailed distribution of neurotensin-like immunoreactivity in the rat central nervous system is described. Highest amounts were found in the hypothalamus, central amygdaloid nucleus, bed nucleus of the stria terminalis and the substantia gelatinosa of the spinal cord and of the trigeminal region.  相似文献   

7.
The subcellular site of biosynthesis of the catecholamine biosynthetic enzymes was examined. Free and membrane-bound polysomes were prepared from bovine adrenal medulla and mRNA was isolated from these polysomes. Both were active in directing cell-free translations. Immunoprecipitation of cell-free products with specific antisera localized the biosynthesis of the subunits of tyrosine hydroxylase (TH) (apparent Mr = 61,000) and of phenylethanolamine N-methyltransferase (PNMT) (apparent Mr = 32,000) on free polysomes, compared with biosynthesis of subunits of dopamine beta-hydroxylase (DBH) (apparent Mr = 67,000) on membrane-bound polysomes. Cross-reactivity between translation products was observed. Antibodies for DBH recognized a polypeptide with electrophoretic mobility identical to newly synthesized PNMT. However increasing concentrations of antibodies to DBH recognized at most 1/20 of the PNMT formed. The results of this study show the subcellular distribution of the catecholamine synthesizing enzymes is determined by their site of biosynthesis.  相似文献   

8.
We assessed the dose‐dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3‐mercaptopyruvate sulfurtransferase (3‐MPST), and cystathionine λ‐lyase (CST) activities in mice. The time‐dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3‐MPST, and CST activities was also examined. Furthermore, TST, 3‐MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3‐MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3‐MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples.  相似文献   

9.
10.
Abstract: Rat brain contains two major NADPH-linked aldehyde reductases that can reduce succinate semialdehyde to 4-hydroxybutyrate. One of these enzymes appears to be fairly specific for succinate semialdehyde and is not significantly inhibited by classic aldehyde reductase inhibitors such as barbiturates. The other enzyme can reduce several aromatic aldehydes and is strongly inhibited by barbiturates and branched-chain fatty acids. Using one such inhibitor, it was possible to distinguish between and measure the two enzyme activities separately in various rat brain regions and in subcellular fractions. Both enzymes are mainly cytoplasmic but there is some activity in the synaptosomal fraction. The activity of the specific succinic semialdehyde reductase is highest in the cerebellum, where it represents 21% of the total activity, and lowest in the cortex, where it represents about 11% of the total activity.  相似文献   

11.
目的为了为揭示肌萎缩脊髓侧索硬化症(amyotrophic lateral sclerosis,ALS)认知功能障碍的机制提供依据,观察不同年龄ALS转基因小鼠海马中突触囊泡蛋白(synaptophysin,Syp)的表达情况。方法取95d、108d和122dALS转基因鼠海马,应用免疫荧光、Westernblot、RT-PCR技术检测Syp在海马中的表达变化。结果与同窝野生型鼠比较,Syp蛋白和mRNA表达水平在95d龄ALS转基因鼠海马中无明显变化,在108d与122d龄ALS转基因鼠海马中明显降低。结论Syp在ALS转基因鼠海马中表达减少表明,突触可塑性降低是ALS学习记忆能力下降的重要病理学基础。  相似文献   

12.
The aim of this review is to analyze how our knowledge on the etiology, pathology, and treatment of amyotrophic lateral sclerosis (ALS) has profited from the application of biotechnology tools for the identification of disease markers, the development of animal disease models, and the design of innovative therapeutics. In humans, ALS-specific clinical, genetic or protein biomarkers, or panels of biomarkers stemming from genomics and proteomics analyses can be critical for early diagnosis, monitoring of disease progression, drug validation in clinical trials, and identification of therapeutic targets for subsequent drug development. At the same time, animal models representing a number of human superoxide dismutase 1 mutations, intermediate-filament disorganization or axonal-transport defects have been invaluable in unraveling aspects of the pathophysiology of the disease; in each case, these only represent a small proportion of all ALS patients. Preclinical and clinical trials, although at present heavily concentrating on pharmacological approaches, are embracing the emerging alternative strategies of stem-cell and gene therapy. In combination with a further subcategorization of patients and the development of corresponding model systems for functional analyses, they will significantly influence the already changing face of ALS therapy.  相似文献   

13.
Abstract: Matrix metalloproteinases (MMPs) were analyzed by immunohistochemistry and zymography in amyotrophic lateral sclerosis (ALS) and control brain and spinal cord specimens. Three major bands of enzyme activity (70, 100, and 130 kDa) were consistently observed and were subsequently identified as MMP-2 (70 kDa; also known as EC 3.4.24.24 or gelatinase A) and MMP-9 (100 and 130 kDa; also known as EC 3.4.24.35 or gelatinase B). Immunohistochemical studies established the presence of MMP-2 in astrocytes and MMP-9 in pyramidal neurons in the motor cortex and motor neurons in the spinal cord of ALS patients. Although a significant decrease in MMP-2 activity was noticed in the ALS motor cortex, statistically significant increases in MMP-9 (100-kDa) activity were observed in ALS frontal and occipital cortices (BA10 and 17) and all three spinal cord regions when compared with control specimens. The highest MMP-9 (100-kDa) activities in ALS were found in the motor cortex and thoracic and lumbar cord specimens. The abnormally high amount of MMP-9 and its possible release at the synapse may destroy the structural integrity of the surrounding matrix, thereby contributing to the pathogenesis of ALS.  相似文献   

14.
目的研究miRNA-132和脑源性神经营养因子(brain derived neurotrophic factor,BDNF)在肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)转基因小鼠脊髓中的表达变化,探讨miRNA-132、BDNF在ALS发病中的作用。方法取SOD1-G93A ALS转基因鼠发病早期(95d)、中期(108d)和晚期(122d)脊髓组织,应用qRT-PCR及原位杂交(hybridization in situ, ISH)技术检测miRNA-132的表达及定位,应用qRT-PCR及Western blot技术检测BDNF在mRNA及蛋白水平变化,免疫荧光技术检测BDNF在脊髓中的表达及分布,以同窝野生型鼠作为对照。结果与野生型鼠比较,miRNA-132在ALS转基因鼠脊髓组织表达下降,miRNA-132阳性信号主要定位脊髓前角细胞胞体;在ALS转基因鼠脊髓组织BDNF mRNA及蛋白水平均增高,BDNF免疫阳性细胞主要表达于脊髓前角神经元,表达信号明显增强。结论 miRNA-132、BDNF可能在ALS发病过程中发挥了重要作用。  相似文献   

15.
Abstract: Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthlne oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 ± 61 pmol/min/107 cells), nucleoside phosphorylase (187 ± B pmol/min/107 cells), and adenosine deaminase (233 ± 32 pmol/min/107 cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   

16.
Purified human central nervous system myelin contains an endogenous cysteine protease which degrades the 100-kDa myelin-associated glycoprotein into a slightly smaller 90-kDa derivative called dMAG, and which has been implicated in demyelinating diseases. The native proteolytic site in human MAG was determined in order to characterize this cysteine protease in humans further. This was accomplished by identifying the carboxy-terminus of purified dMAG. The results of these experiments, in conjunction with peptidolysis assays of myelin, demonstrated that the enzyme which proteolyses MAG is extracellular and has cathepsin L-like specificity. Furthermore, it was shown that this cathepsin L-like activity potentially was regulated by the endogenous extracellular inhibitor cystatin C.  相似文献   

17.
Rat CNS myelinated axons were fractionated by sucrose density gradient centrifugation with a zonal rotor. Fraction VI, obtained at 28-30% sucrose, appeared, on the basis of the presence of related marker enzymes, to be enriched in axolemma. Phospholipid-N-methyltransferases (PMTs) and base-exchange enzymes were associated with fraction VI. PMT activity was significantly stimulated by the addition of either phosphatidylmonomethylethanolamine or phosphatidyldimethylethanolamine but the PMT activity of the homogenate or the myelinated axons was unresponsive. Recoveries of the ethanolamine, serine, and choline base-exchange activities were 14.4%, 13.8%, and 3.4%, respectively, of that present in the myelinated axons. The myelin-rich fraction obtained simultaneously seems contaminated with other membrane fractions.  相似文献   

18.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

19.
The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 μmol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 μmol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.  相似文献   

20.
Electromyographic (EMG) abnormalities that reveal denervation and reinnervation caused by lower motor neuron degeneration do not reflect the number of motor units that determines muscle strength. Consequently, motor unit activity potential (MUAP) parameters do not reflect muscle dysfunction.The aim of the study was to compare the value of motor unit number estimation (MUNE) and MUAP parameters as indicators of clinical muscle dysfunction in patients with amyotrophic lateral sclerosis (ALS), and to analyze the role of MUNE as a supplement to the EMG criteria for the diagnosis of ALS.In 25 patients with ALS, MUNE by the multipoint incremental method in the abductor digiti minimi (ADM) and quantitative EMG in the first dorsal interosseous (FDI) were obtained. The Medical Research Council (MRC) scale was used to evaluate clinical muscle dysfunction. A strong correlation between the number of motor units evaluated by MUNE and ADM clinical function by the MRC scale was found (P < 0.001). An increased value of surface-detected single motor action potential was associated with a decreased MRC score for ADM (P < 0.1). No relation was found between MUAP parameters in FDI and MRC scores. Our data support the value of the MUNE method for the detection of motor unit loss in ALS, and it could be postulated that MUNE studies may be considered complementary tests for ALS in a future revision of ALS criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号