首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of human fibroblast cells with 100 U of either cloned human alpha-2 or beta interferon per ml for 24 h reduced the release of infectious herpes simplex virus type 1 by more than 99%. This inhibition in infectivity correlated well with the total number of extracellular virus particles released from treated cells as determined by DNA dot blot hybridization analysis. Electron microscopic observations of interferon-treated human fibroblast cells clearly demonstrated typical assembly of nucleocapsids inside the nucleus, even though very few mature extracellular particles were seen. Analysis of virus-specific proteins by the immunoblot technique showed that neither species of interferon had a significant inhibitory effect on the synthesis of major nucleocapsid proteins. However, the synthesis of specific glycoproteins (D and B) was drastically reduced or delayed in beta-interferon-treated cells. The results presented in this communication suggest that cloned human interferons block herpes simplex virus morphogenesis at a late stage and inhibit the release of particles from the treated cells.  相似文献   

2.
The metabolism and mode of action of the anti-herpes compound buciclovir [R)-9-(3,4-dihydroxybutyl)-guanine, BCV) has been studied in herpes simplex virus-infected and uninfected Vero cells. In uninfected cells, a low and constant concentration of intracellular BCV was found, while in herpes simplex virus-infected cells, an increasing concentration of BCV phosphates was found due to metabolic trapping. The major phosphorylation product was BCV triphosphate (BCVTP) which was 92% of the total amount of BCV phosphates. BCV phosphates were accumulated to the same extent in cells infected with either a herpes simplex virus type 1 or a herpes simplex virus type 2 strain while thymidine kinase-deficient mutants of herpes simplex virus type 1 were 10 times less efficient in accumulating BCV phosphates. In uninfected Vero cells, the concentration of the phosphorylated forms of BCV was less than 1% of that found in herpes simplex virus-infected cells. The BCVTP formed in herpes simplex virus-infected cells was highly stable, as 80% of the amount of BCVTP was still present even 17 h after removal of extracellular BCV. BCV was a good substrate for herpes simplex virus type 1- and type 2-induced thymidine kinases but not for the cellular cytosol or mitochondrial thymidine kinases. BCV monophosphate could be phosphorylated by cellular guanylate kinase to BCV diphosphate. BCVTP was a selective and competitive inhibitor to deoxyguanosine triphosphate of the purified herpes simplex virus type 1- and type 2-induced DNA polymerases. BCVTP could neither act as an alternative substrate in the herpes simplex virus type 2 or cellular DNA polymerase reactions, nor could [3H]BCV monophosphate be detected in DNA formed by herpes simplex virus type 2 DNA polymerase, or be detected in nucleic acids extracted from herpes simplex virus type 1-infected cells. These data indicate that BCVTP may inhibit the herpes simplex virus-induced DNA polymerase without being incorporated into DNA.  相似文献   

3.
We prepared mouse hybrid cell lines which produced antibodies against herpes simplex virus type 1 and 2 nucleocapsids. Cell lines 1D4 and 3E1, respectively, secreted immunoglobulin G1 herpes simplex virus type 1 and immunoglobulin G1 herpes simplex virus type 2 antibodies which immunoprecipitated proteins designated p40 and p45 from homologous nucleocapsid preparations but precipitated no proteins from heterologous preparations. In contrast, guinea pig antisera prepared against either herpes simplex virus type 1 or 2 p40 precipitated p40 and p45 from both homologous and heterologous preparations. These findings suggest that p40 and p45 possess similar antigenic determinants and that the monoclonal antibodies that were tested reacted preferentially with the homologous determinants.  相似文献   

4.
The wild-type herpes simplex virus 1 genome consists of two components, L and S, which invert relative to each other, giving rise to four isomers. Previously we reported the construction of a herpes simplex virus 1 genome, HSV-1(F)I358, from which 15 kilobase pairs of DNA spanning the junction between L and S components were deleted and which no longer inverted (Poffenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2690-2694, 1983). Further studies on the structure of HSV-1(F)I358 revealed the presence of two submolar populations among packaged DNA. The first, comprising no more than 10% of total packaged DNA, consisted of defective genomes with a subunit size of 36 kilobase pairs. The results suggest that this population arose by recombination through a directly repeated sequence inserted in place of the deleted L-S junction. The second minor population consisted of HSV-1(F)I358 DNA linked head-to-tail. Analyses of the structure of HSV-1(F)I358 DNA after infection indicated that the fraction of total DNA linked head-to-tail increased to approximately 40 to 50% within 30 min after exposure of cells to virus. The formation of head-to-tail linkages did not require de novo protein synthesis. Our interpretation of the results is that the termini of full-length DNA molecules are held together during packaging, that a small fraction of the termini is covalently linked during or after packaging, and that the remainder is covalently joined after the release of viral DNA from the infecting virus by either host or viral factors introduced into the cell during infection.  相似文献   

5.
6.
It has been shown earlier that the reiterated regions TRS and IRS bracketing the Us segment of herpes simplex virus type 1 Angelotti DNA are heterogeneous in size by stepwise insertion of one to six copies of a 550-base-pair nucleotide sequence. Considerably higher amplification of this sequence was observed in defective viral DNA: up to 14 copies were detected to be inserted in the repeat units of a major class of defective herpes simplex virus type 1 Angelotti DNA, dDNA1, which originated from noncontiguous sites located in UL and the inverted repeats of the S component of the parental genome. Physical maps were established for the cleavage sites of KpnI, PstI, XhoI, and BamHI restriction endonucleases on the repeats of dDNA1. The map position of the insertion sequence was determined. It was demonstrated that the amplified inserts were not distributed at random among or within the repeats. A given total population of dDNA1 molecules consisted of different homopolymers, each of which contained a constant number of inserts in all of its repeats. Assuming that a rolling-circle mechanism is involved in the generation of full-length defective herpes simplex virus type 1 Angelotti DNA from single repeat units, these data suggest that the 550-base-pair sequence is amplified in the repeats before the replication process.  相似文献   

7.
DNA-DNA reassociation kinetics of herpes simplex virus type 1 Angelotti DNA and a class of defective viral DNA revealed that the viral standard genome has a total sequence complexity of about 93 X 10(6) daltons and that a portion of 11 X 10(6) daltons occurs twice on the viral genome. These results agree with structural features of herpes simplex virus type 1 DNA derived from electron microscopic studies and restriction enzyme analyses by several investigators. The defective viral DNA (molecular weight, about 97 X 10(6)) displays a sequence complexity of about 11 X 10(6) daltons, suggesting that the molecule is built up by repetitions of standard DNA sequences comprising about 15,000 base pairs. A 2 X 10(6)-dalton portion of these sequences maps in the redundant region and a 9 X 10(6)-dalton portion maps in the unique part of the standard herpes simplex virus type 1 Angelotti DNA, as could be shown by reassociation of viral standard DNA in the presence of defective DNA and vice versa. No cellular DNA sequences could be detected in defective DNA. A 12% molar fraction of the defective DNA consists of highly repetitive sequences of about 350 to 500 base pairs in length.  相似文献   

8.
Nine temperature-sensitive mutants of herpes simplex virus type 2 representing eight complementation groups were assigned to two classes as a consequence of the virion forms and virus-specific cellular alterations observed in thin sections of mutant-infected human embryonic lung cells grown at the nonpermissive temperature. Mutants in class A, one DNA- and one DNA +, failed to synthesize detectable virus particles. Mutants in class B, 4DNA- and 3DNA+, produced moderate to large numbers of empty nucleocapsids. Dense-cored nucleocapsids were not observed in thin sections of cells infected with any of the nine mutants at this temperature. Virus-specific cellular alterations consisted primarily of margination of chromating and nulcear membrane thickening and duplication.  相似文献   

9.
The complete DNA sequence coding for the immediate-early protein (IE180) of pseudorabies virus was determined. The coding region of IE180 is 4380 nucleotides for 1460 amino acid residues. G+C content of the non-coding portion of the IE gene is 70.3% while the G+C content of the coding portion is considerably higher at 80.1%. Correspondingly, codons consisting mainly of Gs and Cs are favoured. Clusters of amino acid homologies are observed among IE180 of pseudorabies virus, ICP4 of herpes simplex virus type-1 and IE140 of varicella-zoster virus, and are organized similarly in all three polypeptides. Functions exhibited by IE180 are assigned, tentatively, to structural domains of the molecule by analogy to the HSV-1 ICP4 polypeptide.  相似文献   

10.
Structure of replicating herpes simplex virus DNA.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have investigated the molecular anatomy of the herpes simplex virus replicative intermediates by cleavage with the restriction endonuclease BglII. We find that in populations of multiply infected cells, pulse-labeled replicating herpes simplex virus DNA contains at least two and probably all four sequence isomers. Also, it contains no detectable termini. In pulse-chase experiments, we show that endless replicative intermediates are the precursors to virion DNA and that maturation is a relatively slow process. The results are discussed in terms of their significance to possible models of herpes simplex virus DNA replication.  相似文献   

11.
Southern blot analysis of latent herpes simplex virus DNA detected in mouse brain and digested with a restriction enzyme revealed two copies of the virion DNA joint fragment. Thus, the absence of free ends noted previously in latent herpes simplex virus type 1 DNA is due to joining of the termini.  相似文献   

12.
The Xba I cleavage pattern of highly purified, but not specifically deproteinized, herpes simplex virus DNA does not match published patterns. If the purified herpes simplex virus DNA is first extracted with phenol and then digested with Xba I, the cleavage pattern matches the published patterns. This comparison is taken as supportive of the hypothesis that there is a protein(s) bound to herpes simplex virus DNA.  相似文献   

13.
Herpesviruses are large double stranded DNA animal viruses with the distinguishing ability to establish latent, life-long infections. To date, eight human herpesviruses that exhibit distinct biological and corresponding pathological/clinical properties have been identified. During their life cycles, herpesviruses execute an intricate chain of events geared towards optimizing their replication. This sets an interesting paradigm to study fundamental biological processes. This review summarizes recent developments in herpesvirus research with emphasis on genome transactions, particularly with respect to the prototypic herpes simplex virus type-1.  相似文献   

14.
Mutants of herpes simplex virus type 1 resistant to the antiviral drug 9-beta-D-arabinofuranosyladenine (araA) have been isolated and characterized. AraA-resistant mutants can be isolated readily and appear at an appreciable frequency in low-passage stocks of wild-type virus. Of 13 newly isolated mutants, at least 11 were also resistant to phosphonoacetic acid (PAA). Of four previously described PAA-resistant mutants, two exhibited substantial araA resistance. The araA resistance phenotype of one of these mutants, PAAr5, has been mapped to the HpaI-B fragment of herpes simplex virus DNA by marker transfer, and araA resistance behaved in marker transfer experiments as if it were closely linked to PAA resistance, a recognized marker for the viral DNA polymerase locus. PAAr5 induced viral DNA polymerase activity which was much less susceptible to inhibition by the triphosphate derivative of araA than was wild-type DNA polymerase. These genetic and biochemical data indicate that the herpes simplex virus DNA polymerase gene is a locus which, when mutated, can confer resistance to araA and thus that the herpes simplex virus DNA polymerase is a target for this antiviral drug.  相似文献   

15.
Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.  相似文献   

16.
Syrian hamster embryo cells were transformed to a neoplastic phenotype after exposure to herpes simplex virus type 2 (S-1) DNA at concentrations (less than or equal to 0.01 microgram per 60-mm dish) at which infectivity was no longer demonstrable. Transformed cells manifested in vitro phenotypic properties characteristic of the neoplastic state, expressed herpes simplex virus-specific antigens, and induced invasive tumors in vivo. Transfection and transformation of Syrian hamster embryo cells with herpes simplex virus type 2 DNA or its fragments is a suitable system for investigating the structure and function of herpes simplex virus-transforming gene(s).  相似文献   

17.
We produced two monoclonal antibodies that precipitate different glycoproteins of similar apparent molecular weight (70,000 to 80,000) from extracts of cells infected with herpes simplex virus type 2. Evidence is presented that one of these glycoproteins is the previously characterized glycoprotein gE, whereas the other maps to a region of the herpes simplex virus type 2 genome collinear with the region in herpes simplex virus type 1 DNA that encodes gC.  相似文献   

18.
B Matz 《Journal of virology》1987,61(5):1427-1434
When the simian virus 40 (SV40)-transformed Syrian hamster cell line Elona is infected with herpes simplex virus type 1, an excessive amplification of SV40-specific DNA sequences occurs. Analysis of total DNA from herpes simplex virus-infected cells revealed that amplified DNA sequences were present predominantly in a high-molecular-weight form, consisting of a tandem array of many unit-length SV40 DNA molecules. Repeat units of amplified DNA were found to be very similar to standard SV40 DNA as was shown by restriction analyses, except for a small deletion close to the origin of replication, which could also be detected in the chromosomal DNA of uninfected cells. A procedure, devised for selective enrichment of amplified SV40 DNA molecules from the bulk of cellular and herpesviral DNA, allowed molecular cloning of single repeat units and nucleotide sequence analysis of the relative genomic region.  相似文献   

19.
The major glycosphingolipids (GSLs) of a line of African green monkey kidney cells (BGM) were characterized as glucosylceramide, lactosylceramide, galactosyl-galactosyl-glucosylceramide, and N-acetylgalactosaminyl-galactosyl-galactosyl-glucosylceramide. Neutral GSLs accounted for approximately 80% of the total GSLs isolated. The predominant gangliosides were N-acetylneuraminyl-galactosyl-glucosylceramide, N-acetylgalactosaminyl-N-acetylneuraminyl-galactosyl- glucosylceramide, and galactosyl-N-acetylgalactosaminyl-N-acetylneuraminyl -galactosyl-glucosylceramide. The incorporation of labeled galactose into GSLs was compared in mock-infected and herpes simplex virus type 1-infected BGM cells. Herpes simplex virus type 1 infection resulted in a three- to four-fold increase in galactose incorporation into glucosylceramide and a decrease in galactose incorporation into galactosyl-galactosyl-glucosylceramide and N-acetyl-galactosaminyl-galactosyl-galactosyl-glucosylceramide. The virus-induced alteration in the GSL labeling pattern occurred early in infection, before the release of infectious virus, and was not prevented by the presence of cytosine arabinoside. Treatment of uninfected BGM cells with cycloheximide resulted in alterations in the GSL pattern which were similar to those observed in herpes simplex virus type 1-infected cells. These observations suggest that an early virus function such as inhibition of host cell protein synthesis is responsible for the observed alterations of GSL metabolism. Experiments with a syncytium-producing strain of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus indicated that other herpes viruses altered GSL metabolism in a manner similar to herpes simplex virus type 1.  相似文献   

20.
Fourteen mutants known or likely to contain mutations in the herpes simplex virus DNA polymerase gene were examined for their sensitivity to aphidicolin in plaque reduction assays. Eleven of these exhibited some degree of hypersensitivity to the drug; altered aphidicolin-sensitivity correlated with altered sensitivity to the pyrophosphate analog, phosphonoacetic acid. The DNA polymerase specified by one of these mutants, PAAr5, required roughly seven-fold less aphidicolin to inhibit its activity by 50% than did polymerase specified by its parental strain. Mutations responsible for the aphidicolin-hypersensitivity phenotype of PAAr5 were mapped to an 0.8 kbp region in the herpes simplex virus DNA polymerase locus. These data taken together indicate that 1) mutations in the herpes simplex virus DNA polymerase gene can confer altered sensitivity to aphidicolin, 2) that the HSV polymerase is sensitive to aphidicolin in vivo, and 3) that amino acid alterations which affect aphidicolin binding may affect the pyrophosphate exchange-release site as well, suggesting that aphidicolin binds in close proximity to this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号