首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aconitase catalyzes a reversible isomerization of citrate into isocitrate in the Krebs cycle. Escherichia coli possesses two kinds of aconitases, aconitase A (AcnA) and B (AcnB), whose structural organizations are different. We analyzed the structural state of AcnA by the chemical crosslinking and small-angle X-ray scattering. The protein adopts a homodimer in solution, as AcnB does. The catalytic assay of the two aconitases revealed that the isomerization of isocitrate displayed a negative cooperativity of the two active sites within each homodimer. On the other hand, insignificant cooperativity was observed in the reverse reaction. Therefore, the homodimerization of AcnAB yields a substrate-dependent cooperative effect. In conjunction with the dissociable homodimer of AcnB, the catalytic property could affect the intracellular metabolic process involving the Krebs cycle.  相似文献   

2.
The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress.  相似文献   

3.
4.
Superoxide damages dehydratases that contain catalytic [4Fe-4S](2+) clusters. Aconitases are members of that enzyme family, and previous work showed that most aconitase activity is lost when Escherichia coli is exposed to superoxide stress. More recently it was determined that E. coli synthesizes at least two isozymes of aconitase, AcnA and AcnB. Synthesis of AcnA, the less-abundant enzyme, is positively controlled by SoxS, a protein that is activated in the presence of superoxide-generating chemicals. We have determined that this arrangement exists because AcnA is resistant to superoxide in vivo. Surprisingly, purified AcnA is extremely sensitive to superoxide and other chemical oxidants unless it is combined with an uncharacterized factor that is present in cell extracts. In contrast, AcnB is highly sensitive to a variety of chemical oxidants in vivo, in extracts, and in its purified form. Thus, the induction of AcnA during oxidative stress provides a mechanism to circumvent a block in the tricarboxylic acid cycle. AcnA appears to be as catalytically competent as AcnB, so the retention of the latter as the primary housekeeping enzyme must provide some other advantage. We observed that the [4Fe-4S] cluster of AcnB is in dynamic equilibrium with the surrounding iron pool, so that AcnB is rapidly demetallated when intracellular iron pools drop. AcnA and other dehydratases do not show this trait. Demetallated AcnB is known to bind its cognate mRNA. The absence of AcnB activity also causes the accumulation and excretion of citrate, an iron chelator for which E. coli synthesizes a transport system. Thus, AcnB may be retained as the primary aconitase because the lability of its exposed cluster allows E. coli to sense and respond to iron depletion.  相似文献   

5.
The nucleotide sequence of the aconitase gene (acn) of Escherichia coli was determined and used to deduce the primary structure of the enzyme. The coding region comprises 2670 bp (890 codons excluding the start and stop codons) which define a product having a relative molecular mass of 97,513 and an N-terminal amino acid sequence consistent with those determined previously for the purified enzyme. The acn gene is flanked by the cysB gene and a putative riboflavin biosynthesis gene resembling the ribA gene of Bacillus subtilis. The 1004-bp cysB--acn intergenic region contains several potential promoter and regulatory sequences. The amino acid sequence of the E. coli aconitase is similar to the mitochondrial aconitases (27-29% identity) and the isopropylmalate isomerases (20-21% identity) but it is most similar to the human iron-responsive-element-binding protein (53% identity). The three cysteine residues involved in ligand binding to the [4Fe-4S] centre are conserved in all of these proteins. Of the remaining 17 active-site residues assigned for porcine aconitase, 16 are conserved in both the bacterial aconitase and the iron-responsive-element-binding protein and 14 in the isopropylmalate isomerases. It is concluded that the bacterial and mitochondrial aconitases, the isopropylmalate isomerases and the iron-responsive-element-binding protein form a family of structurally related proteins, which does not include the Fe-S-containing fumarases. These relationships raise the possibility that the iron-responsive-element-binding protein may be a cytoplasmic aconitase and that the E. coli aconitase may have an iron-responsive regulatory function.  相似文献   

6.
Mitochondrial energy metabolism and Krebs cycle activities are developmentally regulated in the life cycle of the protozoan parasite Trypanosoma brucei. Here we report cloning of a T. brucei aconitase gene that is closely related to mammalian iron-regulatory protein 1 (IRP-1) and plant aconitases. Kinetic analysis of purified recombinant TbACO expressed in Escherichia coli resulted in a K(m) (isocitrate) of 3 +/- 0.4 mM, similar to aconitases of other organisms. This was unexpected since an arginine conserved in the aconitase protein family and crucial for substrate positioning in the catalytic center and for activity of pig mitochondrial aconitase (Zheng, L., Kennedy, M. C., Beinert, H., and Zalkin, H. (1992) J. Biol. Chem. 267, 7895-7903) is substituted by leucine in the TbACO sequence. Expression of the 98-kDa TbACO was shown to be lowest in the slender bloodstream stage of the parasite, 8-fold elevated in the stumpy stage, and increased a further 4-fold in the procyclic stage. The differential expression of TbACO protein contrasted with only minor changes in TbACO mRNA, indicating translational or post-translational mechanisms of regulation. Whereas animal cells express two distinct compartmentalized aconitases, mitochondrial aconitase and cytoplasmic aconitase/IRP-1, TbACO accounts for total aconitase activity in trypanosomes. By cell fractionation and immunofluorescence microscopy, we show that native as well as a transfected epitope-tagged TbACO localizes in both the mitochondrion (30%) and in the cytoplasm (70%). Together with phylogenetic reconstructions of the aconitase family, this suggests that animal IRPs have evolved from a multicompartmentalized ancestral aconitase. The possible functions of a cytoplasmic aconitase in trypanosomes are discussed.  相似文献   

7.
Legionella pneumophila has high iron requirements, and its intracellular growth in human monocytes is dependent on the availability of intracellular iron. To learn more about iron metabolism in L. pneumophila, we have undertaken an analysis of the iron proteins of the bacterium. We first developed an assay to identify proteins by 59Fe labelling and nondenaturing polyacrylamide gel electrophoresis. The assay revealed seven iron proteins (IPs) with apparent molecular weights of 500, 450, 250, 210, 150, 130, and 85. IP150 comigrates with superoxide dismutase activity and is probably the Fe-superoxide dismutase of L. pneumophila. IP210 is the major iron-containing protein (MICP). To identify and characterize MICP, we purified the protein and cloned and sequenced its gene. MICP is a monomeric protein containing 891 amino acids, and it has a calculated molecular mass of 98,147 Da. Analysis of the sequence revealed that MICP has two interesting homologies. First, MICP is highly homologous with the human iron-responsive element-binding protein, consistent with the hypothesis that this critical iron-regulatory molecule of humans has a prokaryotic ancestor. Second, MICP is highly homologous with the Escherichia coli aconitase and to a lesser extent with porcine heart mitochondrial aconitase. Consistent with this, we found that MICP exhibits aconitase activity. In contrast to other aconitases, MICP has a single amino acid change of a potentially deleterious type at a site thought to be critical for substrate binding and enzymatic activity. However, the specific activity of MICP is roughly comparable to that of other aconitases, suggesting that the mutation has at most a mild effect on the aconitase activity of MICP. The abundance of MICP in L. pneumophila suggests either that L. pneumophila requires high aconitase and perhaps tricarboxylic acid cycle activity or that the bacterium requires large amounts of this protein to serve an additional role in bacterial physiology. A need for large amounts of MICP, which contains four Fe atoms per molecule when fully loaded, could at least partly explain L. pneumophila's high metabolic requirement for iron.  相似文献   

8.
Nitric oxide modulates the activity of tobacco aconitase   总被引:27,自引:0,他引:27       下载免费PDF全文
Recent evidence suggests an important role for nitric oxide (NO) signaling in plant-pathogen interactions. Additional elucidation of the role of NO in plants will require identification of NO targets. Since aconitases are major NO targets in animals, we examined the effect of NO on tobacco (Nicotiana tabacum) aconitase. The tobacco aconitases, like their animal counterparts, were inhibited by NO donors. The cytosolic aconitase in animals, in addition to being a key redox and NO sensor, is converted by NO into an mRNA binding protein (IRP, or iron-regulatory protein) that regulates iron homeostasis. A tobacco cytosolic aconitase gene (NtACO1) whose deduced amino acid sequence shared 61% identity and 76% similarity with the human IRP-1 was cloned. Furthermore, residues involved in mRNA binding by IRP-1 were conserved in NtACO1. These results reveal additional similarities between the NO signaling mechanisms used by plants and animals.  相似文献   

9.
Salmonella enterica serovar Typhimurium LT2 catabolizes propionate through the 2-methylcitric acid cycle, but the identity of the enzymes catalyzing the conversion of 2-methylcitrate into 2-methylisocitrate is unclear. This work shows that the prpD gene of the prpBCDE operon of this bacterium encodes a protein with 2-methylcitrate dehydratase enzyme activity. Homogeneous PrpD enzyme did not contain an iron-sulfur center, displayed no requirements for metal cations or reducing agents for activity, and did not catalyze the hydration of 2-methyl-cis-aconitate to 2-methylisocitrate. It was concluded that the gene encoding the 2-methyl-cis-aconitate hydratase enzyme is encoded outside the prpBCDE operon. Computer analysis of bacterial genome databases identified the presence of orthologues of the acnA gene (encodes aconitase A) in a number of putative prp operons. Homogeneous AcnA protein of S. enterica had strong aconitase activity and catalyzed the hydration of the 2-methyl-cis-aconitate to yield 2-methylisocitrate. The purification of this enzyme allows the complete reconstitution of the 2-methylcitric acid cycle in vitro using homogeneous preparations of the PrpE, PrpC, PrpD, AcnA, and PrpB enzymes. However, inactivation of the acnA gene did not block growth of S. enterica on propionate as carbon and energy source. The existence of a redundant aconitase activity (encoded by acnB) was postulated to be responsible for the lack of a phenotype in acnA mutant strains. Consistent with this hypothesis, homogeneous AcnB protein of S. enterica also had strong aconitase activity and catalyzed the conversion of 2-methyl-cis-aconitate into 2-methylisocitrate. To address the involvement of AcnB in propionate catabolism, an acnA and acnB double mutant was constructed, and this mutant strain cannot grow on propionate even when supplemented with glutamate. The phenotype of this double mutant indicates that the aconitase enzymes are required for the 2-methylcitric acid cycle during propionate catabolism.  相似文献   

10.
11.
Biosynthesis of iron–sulphur (Fe‐S) proteins is catalysed by multi‐protein systems, ISC and SUF. However, ‘non‐ISC, non‐SUF’ Fe‐S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a ‘non‐ISC, non SUF’ component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a ‘degenerate’ A‐type carrier domain (ATC*) lacking Fe‐S cluster co‐ordinating Cys ligands. The Nfu domain binds a [4Fe‐4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo‐NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe‐S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe‐S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.  相似文献   

12.
BACKGROUND: The cytotoxicity of most ribonuclease E colicins towards Escherichia coli arises from their ability to specifically cleave between bases 1493 and 1494 of 16S ribosomal RNA. This activity is carried by the C-terminal domain of the colicin, an activity which if left unneutralised would lead to destruction of the producing cell. To combat this the host E. coli cell produces an inhibitor protein, the immunity protein, which forms a complex with the ribonuclease domain effectively suppressing its activity. RESULTS: We have solved the crystal structure of the cytotoxic domain of the ribonuclease colicin E3 in complex with its immunity protein, Im3. The structure of the ribonuclease domain, the first of its class, reveals a highly twisted central beta-sheet elaborated with a short N-terminal helix, the residues of which form a well-packed interface with the immunity protein. CONCLUSIONS: The structure of the ribonuclease domain of colicin E3 is novel and forms an interface with its inhibitor which is significantly different in character to that reported for the DNase colicin complexes with their immunity proteins. The structure also gives insight into the mode of action of this class of enzymatic colicins by allowing the identification of potentially catalytic residues. This in turn reveals that the inhibitor does not bind at the active site but rather at an adjacent site, leaving the catalytic centre exposed in a fashion similar to that observed for the DNase colicins. Thus, E. coli appears to have evolved similar methods for ensuring efficient inhibition of the potentially destructive effects of the two classes of enzymatic colicins.  相似文献   

13.
Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricin tripeptide (PTT). In the postulated biosynthetic pathway, one reaction, the isomerization of phosphinomethylmalate, resembles the aconitase reaction of the tricarboxylic acid (TCA) cycle. It was speculated that this reaction is carried out by the corresponding enzyme of the primary metabolism (C. J. Thompson and H. Seto, p. 197-222, in L. C. Vining and C. Stuttard, ed., Genetics and Biochemistry of Antibiotic Production, 1995). However, in addition to the TCA cycle aconitase gene, a gene encoding an aconitase-like protein (the phosphinomethylmalate isomerase gene, pmi) was identified in the PTT biosynthetic gene cluster by Southern hybridization experiments, using oligonucleotides which were derived from conserved amino acid sequences of aconitases. The deduced protein revealed high similarity to aconitases from plants, bacteria, and fungi and to iron regulatory proteins from eucaryotes. Pmi and the S. viridochromogenes TCA cycle aconitase, AcnA, have 52% identity. By gene insertion mutagenesis, a pmi mutant (Mapra1) was generated. The mutant failed to produce PTT, indicating the inability of AcnA to carry out the secondary-metabolism reaction. A His-tagged protein (Hispmi*) was heterologously produced in Streptomyces lividans. The purified protein showed no standard aconitase activity with citrate as a substrate, and the corresponding gene was not able to complement an acnA mutant. This indicates that Pmi and AcnA are highly specific for their respective enzymatic reactions.  相似文献   

14.
15.
16.
17.
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.  相似文献   

18.
Aconitases are iron-sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase-iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron-sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and alpha-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of alpha-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1(-) mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron-sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1-KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family.  相似文献   

19.
S Soelaiman  K Jakes  N Wu  C Li  M Shoham 《Molecular cell》2001,8(5):1053-1062
Colicins kill E. coli by a process that involves binding to a surface receptor, entering the cell, and, finally, intoxicating it. The lethal action of colicin E3 is a specific cleavage in the ribosomal decoding A site. The crystal structure of colicin E3, reported here in a binary complex with its immunity protein (IP), reveals a Y-shaped molecule with the receptor binding domain forming a 100 A long stalk and the two globular heads of the translocation domain (T) and the catalytic domain (C) comprising the two arms. Active site residues are D510, H513, E517, and R545. IP is buried between T and C. Rather than blocking the active site, IP prevents access of the active site to the ribosome.  相似文献   

20.
Iron and citrate are essential for the metabolism of most organisms, and regulation of iron and citrate biology at both the cellular and systemic levels is critical for normal physiology and survival. Mitochondrial and cytosolic aconitases catalyze the interconversion of citrate and isocitrate, and aconitase activities are affected by iron levels, oxidative stress and by the status of the Fe–S cluster biogenesis apparatus. Assembly and disassembly of Fe–S clusters is a key process not only in regulating the enzymatic activity of mitochondrial aconitase in the citric acid cycle, but also in controlling the iron sensing and RNA binding activities of cytosolic aconitase (also known as iron regulatory protein IRP1). This review discusses the central role of aconitases in intermediary metabolism and explores how iron homeostasis and Fe–S cluster biogenesis regulate the Fe–S cluster switch and modulate intracellular citrate flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号