首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The visual pigments and oil droplets in the retina of the diurnal gecko Gonatodes albogularis were examined microspectrophotometrically, and the spectral sensitivity under various adapting conditions was recorded using electrophysiological responses. Three classes of visual pigments were identified, with max at about 542, 475, and 362 nm. Spectral sensitivity functions revealed a broad range of sensitivity, with a peak at approximately 530–540 nm. The cornea and oil droplets were found to be transparent across a range from 350–700 nm, but the lens absorbed short wavelength light below 450 nm. Despite the filtering effect of the lens, a secondary peak in spectral sensitivity to ultraviolet wavelengths was found. These results suggest that G. albogularis does possess the visual mechanisms for discrimination of the color pattern of conspecifics based on either hue or brightness. These findings are discussed in terms of the variation in coloration and social behavior of Gonatodes.Abbreviations ERG electroretinogram - MSP microspectrophotometry - UV ultraviolet - max wavelength of maximum absorbance  相似文献   

2.
Summary Intracellular potentials from the isolated dark-adapted pineal organ ofPhoxinus phoxinus were recorded by using glass microelectrodes. The majority of cells had resting potentials of 20 to 35 mV and responded to light with intensitygraded hyperpolarizations. Voltage intensity curves of responses to brief flashes followed the hyperbolic tangent functionV/V max=In/(I n + n ).The latency of onset for responses to light stimuli near threshold was 400 ms and decreased with saturating flashes to about 50 ms. The membrane resistance decreased during the hyperpolarization. Spectral sensitivity measurements for these cells exhibited curves with max=530 nm. Intracellular dye injection unequivocally identified this cell type as a photoreceptor cell.A second cell type with resting potentials between 30 to 40 mV exhibited a biphasic response pattern to light stimulation. The cell depolarized with dim light flashes and hyperpolarized with bright flashes. The amplitude of the hyperpolarizing component showed no saturation over an intensity range of 5 log units. Latencies and rise times were comparable to those of photoreceptor potentials. Spectral sensitivity curves peaked at longer wavelengths ( max=550 nm) than the action spectra of photoreceptors ( max=530 nm). It is assumed that this rare cell type represents a small class of pineal interneurons.  相似文献   

3.
Electroretinogram (ERG) flicker photometry was used to study the spectral mechanisms in the retinas of white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama). In addition to having a rod pigment with maximum sensitivity (max) of about 497 nm, both species appear to have two classes of photopic receptors. They share in common a short-wavelength-sensitive cone mechanism having max in the region of 450–460 nm. Each also has a cone having peak sensitivity in the middle wavelengths, but these differ slightly for the two species. In white-tailed deer the max of this cone is about 537 nm; for the fallow deer the average max value for this mechanism was 542 nm. Deer resemble other ungulates and many other types of mammal in having two classes of cone pigment and, thus, the requisite retinal basis for dichromatic color vision.Abbreviations ERG electroretinogram - LWS long wavelength sensitive - MWS middle wavelength sensitive - SWS short wavelength sensitive  相似文献   

4.
Summary With the aid of a microspectrophotometer the visual pigments and oil globules in the retina of the emu (Dromiceius novae-hollandiae), the brushland tinamou (Nothoprocta c. cinerascens) and the Chilean tinamou (Nothoprocta perdicaria sanborni) were characterized. All three of these palaeognathous birds contain in their rods a typical rhodopsin with max near 500 nm. Each of these birds has cones containing iodopsin-like visual pigments with max in the 560–570 nm spectral region. No unequivocal evidence was obtained for the presence of cone pigments other than this iodopsin-like pigment, although one cell thought to be a cone, and containing a visual pigment with max near 498 nm, was observed in the retina of the brushland tinamou. The oil globule systems of the three palaeognathous species are identical to each other and are much simpler than is typical for neognathous birds in that only two different types of globule are present, one with T50 at 508 nm and another with T50 at 568 nm. Comparison of the data with observations made on neognathous species indicates (1) that palaeognathous birds probably have poorer color discrimination capabilities than neognathous birds and (2) that the tinamou is more closely related to the ratites than to the galliform species.This study was supported, in part, by NIH Grant No. EY01839 (A.J. Sillman), NIH Grant No. EY00323 (W.N. McFarland) and NSF Grant No. 78-07657 (E.R. Loew). The authors thank E. Clinite, R. Dunford, C. Murphy, R. Riis and D. Weathers for their valuable assistance. Thanks also go to R.E. Burger for his gift of the emus.  相似文献   

5.
Summary Scotopic visual pigments measured in the creek chub and the white sucker are porphyropsins with mean max values located at 538.3 and 536.5 nm, respectively. There is a shift of the max towards shorter wavelengths during the winter in both of these species coinciding with similar changes in the quality of downwelling light. max is significantly correlated to the P50 and spectrum width of the downwelling light and dissolved oxygen. An analysis of variance shows that there are significant differences between the max values of: fish in the two lakes, fish at different times, the two species at different times and fish in different lakes at different seasons. The offset visual pigments of both species appear to be well adapted to their photic environment in terms of the contrast hypothesis. This improvement of contrast detection is discussed in relation to their feeding habits.Abbreviations max wavelength at which absorbance is maximum - P50 wavelength which halves the total number of photons between 400 and 700 nm, a measure of spectral quality - PAR photosynthetically active radiation - MSP microspectrophotometric - SE standard error  相似文献   

6.
The endophytic cyanobacterium, Anabaena azollae, isolated from laboratory cultures of Azolla caroliniana Willd., contains three spectroscopically distinct biliproteins. About 70% of the biliprotein is c-phycocyanin (max 610 nm) and 13% is allophycocyanin (max 647 nm, shoulder 620 nm). A third pigment corresponds to phycoerythrocyanin (max 570 nm, shoulder 590 nm). In very dilute solutions of allophycocyanin, at constant pH and buffer strength, the 647 nm maximum disappears and a single max occurs at 615–620 nm. The 647 nm absorption maximum reappears upon concentrating the dilute solution. Very dilute solutions of phycoerythrocyanin exhibit a broad peak between 570 and 590 nm. Absorption spectra of c-phycocyanin are not significantly altered upon dilution. Fluorescence emission maxima of phycoerythrocyanin, c-phycocyanin, and allophycocyanin occur at 630 nm, 643 nm and 660 nm respectively, using 540 nm excitation. Two subunits, of molecular weight 16,500 () and 20,600 (), are seen in c-phycocyanin upon dissociation with SDS. Dissociation of allophycocyanin and phycoerythrocyanin with SDS yields one sizeclass of subunits, with a molecular weight of about 17,500 for allophycocyanin and 18,000 for phycoerythrocyanin.Contribution No. 684 Offprint requests to: G. A. Peters  相似文献   

7.
Onion guard cells, in contrast to those of Vicia and Pisum, do not require an alkaline treatment in order to fluoresce. Fluorescing compounds of Allium cepa L. were characterized using in-vivo microspectrophotometry; furthermore, invitro chemical analysis for epidermal tissue, intact guard and epidermal cells, and isolated guard-cell protoplasts was performed. The emission intensity (max 520 nm) decreased when intact onion guard cells were excited with 436 nm light, but increased (max 470 nm) when excited at 365 nm. This photodecomposition at 436 nm is typical of flavins or flavoproteins whereas an increase in fluorescence intensity with excitation at 365 nm may be explained by the presence of other substances. The presence of flavins could not be unambiguously confirmed from these results. Indeed, the absorption spectra of the vacuolar area of guard cells did not show the peak at 445 nm which is characteristic for flavins. Furthermore, there was no decrease of absorption at the excitation wavelengths of 440 and 330 nm. Since spectral data indicate the presence at high amounts of flavonoids in guard and epidermal cells, this may reduce the sensitivity for the detection of flavins in guard cells. Using thin-layer chromatography and high-performance liquid chromatography together with hydrolytic procedures, flavonol glycosides with kaempferol and quercetin as aglycones substituted with sulphate and glucuronate were identified. Further studies on guard-cell metabolism should consider the presence of flavonoids in stomata of onion and other plants.Abbreviations GCP guard-cell protoplast - HPLC high-performance liquid chromatography - TLC thin-layer chromatography  相似文献   

8.
The fluorescence behavior of two tryptophans (Trp-134, Trp-213) in bovine serum albumin (BSA) and a single tryptophan (Trp-214) in human serum albumin (HSA) was examined. The maximum emission wavelength (max) was 340.0 nm for both proteins. In a solution of sodium dodecyl sulfate (SDS), the max of BSA abruptly shifted to 332 nm at 1 mM SDS and then reversed to 334 nm at 3 mM SDS. The max of HSA gradually shifted to 330 nm below 3 mM SDS, although it returned to 338 nm at 10 mM SDS. In contrast to this, in a solution of dodecyltrimethylammonium bromide, the max positions of BSA and HSA gradually shifted to 334.0 and 331.5 nm, respectively. Differences in the fluorescence behavior of the proteins are attributed to the fact that Trp-134 exists only in BSA, with the assumption that Trp-213 of BSA behaves the same as Trp-214 of HSA. The Trp-134 behavior appears to relate to the disruption of the helical structure in the SDS solution.  相似文献   

9.
Summary The UV-B radiation (e.g. 337 nm) induced blue fluorescence (BF) and red chlorophyll fluorescence spectra (RF) of green leaves from plants with different leaf structure were determined and the possible nature and candidates of the blue fluorescence emission investigated. The blue fluorescence BF is characterized by a main maximum in the 450 nm region and in most cases by a second maximum/shoulder in the 530 nm region. The latter has been termed green fluorescence GF. The red chlorophyll fluorescence RF, in turn, exhibits two maxima in the 690 and 730 nm region. In general, the intensity of BF, GF and RF emission is significantly higher in the lower than the upper leaf side. The ratio of BF to RF emission (F450/F690) seems to vary from plant species to plant species. BF and GF emission spectra appear to be a mixed signal composed of the fluorescence emission of several substances of the plant vacuole and cell wall, which may primarily arise in the epidermis. Leaves with removed epidermis and chlorophyll-free leaves, however, still exhibit a BF and GF emission. Candidates for the blue fluorescence emission ( max near 450 nm) are phenolic substances such as chlorogenic acid, caffeic acid, coumarins (aesculetin, scopoletin), stilbenes (t-stilbene, rhaponticin), the spectra of which are shown. GF emission ( max near 530 nm) seems to be caused by substances like the alkaloid berberine and quercetin. Riboflavine, NADPH and phyllohydroquinoneK 1 seem to contribute little to the BF and GF emission as compared to the other plant compounds. Purified natural-carotene does not exhibit any blue fluorescence.  相似文献   

10.
We report on the lens pigmentation and visual pigments of 52 species of demersal deep-sea fishes caught at depths ranging from 480 m to 4110 m in the Porcupine Seabight and Goban Spur area of the North-eastern Atlantic. Only one species, caught between 480 and 840 m, had a lens with large amounts of pigment, consistent with the hypothesis that heavily pigmented lenses in deep-sea fish serve to enhance the contrast of bioluminescent signals by removing much of the background radiance, which is only visible to fish living shallower than 1000 m. Low concentrations of lens pigmentation were also observed in a further two species (Rouleina attrita and Micromesisteus poutassou). The retinae of all species except five, contained only a single visual pigment, as determined by microspectrophotometry of individual rods, and/or spectrophotometry of retinal wholemounts and retinal extracts. Those fishes caught between 500 m and 1100 m had wavelengths of peak sensitivity (max) ranging from 476 nm to 494 nm, while most fish living below 1100 m tended to be more conservative with (max) values ranging from 475 nm to 485 nm. The only exceptions to this were three deep-living species caught between 1600 m and 2000 m whose retinae contain abnormally short-wave sensitive visual pigments (Cataetyx laticepsmax 468 nm; Alepocephalus bairdiimax 467 nm; Narcetes stomias max 472 nm), suggesting adaptation for the detection of short-wave bioluminescence.  相似文献   

11.
Summary A quantitative histochemical method to determine the apparent Km and V max values of rat intestinal unspecific alkaline phosphatase at different sites of the villi is described. Naphthol-As-Bi-phosphate (0.025–1.5 mM) is employed as substrate and Fast Blue B as coupling reagent, and the resulting azo-dye in the brush border membrane has an absorbance maximum at 550 nm. The ratio between the absorbance at 550 and 500 nm is constant as calculated from automatically recorded spectra at different intense dye deposits. Its absorbance is a linear function of incubation time up to 3 min and thickness of the slices up to 10 m both with medium (0.5 mM) and high (1.5 mM) substrate concentrations. Using the histochemical assay under comparable conditions in test tube experiments with homogenates of intestinal mucosa an app. Km of 0.26±0.081 mM (weighted regression analysis) and 0.28–0.084 mM (direct linear plotting) is determined, demonstrating an affinity to the histochemical substrate, which is about 10 times higher than for p-Nitro-phenyl-phosphate with the purified enzyme.The results obtained by scanning the total dye deposits along jejunal villi show considerable differences in enzymatic activity between single villi and an increase from the villus base up to the transition between medium and apical villus third. As well in the apical region as at the villus base saturation curves are obtained by determining the relationship between the absorbance and the substrate concentration under standard conditions (slice thickness 10 m, incubation time 3 min, 37°C, pH 8.3). Calculated by weighted regression analysis and direct linear plotting from the absorbance data of six female rats the medium app. kinetic data ±SD from the jejunal villi read as follows. Apical: Km=0.81±0.438 mM, V max=3.99±1.217 absorbance units (A) and Km=0.87±0.428 mM, V max=4.02±1.191 A, respectively. Basal: Km=0.82±0.261 mM, V max=3.26±0.719 A and Km=0.77±0.184 mM, V max=3.04±0.518 AU, respectively. As demonstrated by factorial analysis of variance only V max is influenced by the villus position.Supported by the Deutsche Forschungsgemeinschaft GU 184/1  相似文献   

12.
To examine the influence of the spectral characteristics of underwater light on spectral sensitivity of the ON and OFF visual pathways, compound action potential recordings were made from retinal ganglion cells of threespine stickleback from different photic regimes. In fish from a red-shifted photic regime (P50 680 nm for downwelling light at 1m), peak sensitivity of both the ON and OFF pathways was limited to long wavelength light (max 600–620). In contrast, the ON pathway of fish from a comparatively blue-shifted (P50 566 nm) photic regime exhibited sensitivity to medium (max 540–560) and long (max 600 nm) wavelengths, while the OFF pathway exhibited peak sensitivity to only medium (max 540 nm) wavelength light. In a third population, where the the ambient light is moderately red-shifted (P50 629 nm), the ON pathway once again exhibited only a long wavelength sensitivity peak at 620 nm, while the OFF pathway exhibited sensitivity to both medium (max 560 nm) and long (max 600–620 nm) wavelength light. These findings suggest that the photic environment plays an integral role in shaping spectral sensitivity of the ON and OFF pathways.  相似文献   

13.
M. G. Holmes  E. Schäfer 《Planta》1981,153(3):267-272
Detailed action spectra are presented for the inhibition of hypocotyl extension in dark-grown Sinapis alba L. seedlings by continuous (24 h) narrow waveband monochromatic light between 336 nm and 783 nm. The results show four distinct wavebands of major inhibitory action; these are centred in the ultra-violet (max=367 nm), blue (max=446 nm), red (max=653 nm) and far-red (max=712 nm) wavebands. Previous irradiation of the plants with red light (which also decreases Ptot) causes decreased inhibitory action by all wavelengths except those responsible for the red light inhibitory response. Pre-irradiation did not alter the wavelength of the action maxima. It is concluded that ultra-violet and blue light act mainly on a photoreceptor which is different from phytochrome.Abbreviations B blue - D dark - FR far-red - HIR high irradiance reaction - HW half power bandwith - Pr R absorbing form of phytochrome - Pfr FR absorbing form of phytochrome - Ptot total phytochrome=Pr+Pfr - R red - UV ultra violet  相似文献   

14.
Summary Increment threshold measurements in wild rabbits give rise to spectral sensitivity curves that are unimodal or bimodal in nature, depending on the background luminance. We propose a model that explains the shape of these curves on the basis of synergistic and antagonistic interaction of blue cones (max = 425 nm), green cones (max = 523 nm) and rods (max = 498 nm).  相似文献   

15.
The visual pigment of a stomatopod crustacean,Squilla empusa   总被引:2,自引:0,他引:2  
Summary Stomatopod crustaceans are visually active animals which have large, mobile compound eyes of unique design. Aspects of their ecology and behavior suggest they may be able to discriminate hues. Isolated rhabdoms of the squillid stomatopod,Squilla empusa, were investigated using microspectrophotometry and fluorometry. A single rhodopsin, of max507 nm, exists in the main rhabdom. Its stable metarhodopsin, with max503 nm, possesses typical arthropod fluorescence characteristics. No evidence was found for a visual pigment with peak absorption in the ultraviolet. Vision in this animal might therefore be monochromatic.Abbreviation ASW artificial sea water  相似文献   

16.
Summary Cyanobacteria (blue-green algae) and Rhodophyta (red algae) contain high concentrations of photosynthetic accessory pigments (phycobiliproteins) which trap light energy in the region between 400 and 650 nm. The electronic excitation energy is then transferred along a chain of these pigments to the reaction center chlorophyll of Photosystem II by a radiationless induced resonance process.Unlike the protein-chlorophyll complexes in the photosynthetic lamellae, the phycobiliproteins are readily soluble in aqueous solution, can be isolated in a variety of assembly forms, and crystallize readily. These properties facilitate the study of the structure of these proteins by chemical, physical, and immunological methods, as well as by X-ray diffraction and electron microscopy.The brilliantly colored phycobiliproteins are a homologous family of conjugated proteins of differing spectroscopic properties. The basic structural unit in these proteins is a monomer of 30,000–40,000 daltons made up of two dissimilar polypeptide chains, and . Each subunit carries covalently linked tetrapyrrole prosthetic groups related to the bile pigment biliverdin.The distinctive spectroscopic properties of each phycobiliprotein are a consequence of the chemical structure of the bile pigment it carries, and of the influence of the conformation and aggregation state of the protein on the spectra of these prosthetic groups. In vivo, the phycobiliproteins are organized into particles, phycobilisomes, attached in a regular array to the outer surface of the photosynthetic lamellae. Studies on phycobilisomes, and on intact cells, indicate the following pathway of energy transfer.Phycoerythrin Phycocyanin (max 560 nm) (max 620 nm) Allophycocyanin Allophycocyanin B (max 650 nm)(max 671 nm) Chlorophyll a (max 680 nm)The amounts of the various phycobiliproteins in the cell are influenced by the intensity and energy distribution of the incident radiation. The phenomena of intensity adaptation and complementary chromatic adaptation yield insights into the structure of phycobilisomes and the molecular basis of the plasticity of the structure of this light-harvesting system.Invited article.  相似文献   

17.
Summary The deep-sea bioluminescent squid, Watasenia scintillans, has three visual pigments: The major one (A1 pigment) is based on retinal and has max = 484 nm, the second one (A2 pigment) is based on 3-dehydroretinal and has max = 500 nm, and the third one (A4 pigment) is based on 4-hydroxyretinal and has max = 470 nm. The distribution of these 3 visual pigments in the retina was studied by HPLC analysis of the retinals in retina slices obtained by microdissection. It was found that A1 pigment was not located in the specific region of the ventral retina receiving the down-welling light which contains very long photoreceptor cells, forming two strata. A2 and A4 pigment were found exclusively in the proximal pinkish stratum and in the distal yellowish stratum. The role of these pigments in the retina is hypothesized to involve spectral discrimination. The extraction and analysis of retinoids to determine the origin of 3-dehydroretinal and 4-hydroxyretinal in the mature squid showed only a trace amount of 4-hydroxyretinol in the eggs. Similar analysis of other cephalopods collected near Japan showed the absence of A2 or A4 pigment in their eyes.Abbreviations HPLC high-performance liquid chromatography - IS inner segment - OS outer segment  相似文献   

18.
Summary Spectral sensitivity curves were measured for bluegills using a heart-rate conditioning technique. A mean spectral sensitivity curve (n=3) determined using a white background exhibited two main peaks, indicating the possible presence of two cone photoreceptors mechanisms. Chromatic adaptation was used to separate the contribution of the cone mechanisms to sensitivity. Peak sensitivities were located at 540 and 640 nm against red and blue-green backgrounds, respectively.Light adaptation curves were measured for each cone mechanism indicating that these cone mechanisms have their greatest contrast sensitivity at higher background intensities. Spatial summation properties were also measured for each cone mechanism revealing a critical diameter (summation area) of 5° for both mechanisms.Microspectrophotometric (MSP) measurements were made on individuals from the same group of bluegills used in the above experiments. The results showed the presence of two cone types: single green-sensitive cones with an average max of 536 nm (SD±1.8nm,n=11) and twin redsensitive cones with an average max of 620 nm (SD ±1.9 nm,n=11).The correlation between the visual pigment absorption spectra and action spectra of the two cone mechanisms indicate a sound physiological basis for sensitivity. The functional properties of the two cone mechanisms, will be discussed in relation to the ecological and behavioral aspects of bluegills.Abbreviation TVI threshold vs intensity  相似文献   

19.
Responses of single visual cells of the anterior part of the compound eye of the oriental cockroachBlatta orientalis were recorded intracellularly. Two spectral types of cells were discovered: ultraviolet receptors with max 361 nm and green-sensitive receptors with max 503 nm. The spectral curve of the whole eye, measured by the electroretinogram, included two peaks (=350–370 and 500 nm) and a minimum between 400 and 430 nm. This last fact is interpreted as additional evidence of the dichromatic vision of the cockroach.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 57–61, January–February, 1985.  相似文献   

20.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号