首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Up to the present time it has been impossible to perform two-dimensional (2-D) separations in very acidic immobilized pH gradients (IPG), due to the lack of suitable buffering acrylamido derivatives to be incorporated into the polyacrylamide matrix. The advent of the pK 3.1 buffer (2-acrylamido glycolic acid; Righetti et al., J. Biochem. Biophys. Methods 16, 1988, 185–192) allowed the formulation of such acidic gradients. We report here separations in IPG pH 2.8–5.0 intervals of polypeptide chains from total lysates of rat intestinal and liver cells and 30S and 50S ribosomal proteins from Halobacterium marismortui. Conditions are given for highly reproducible first and second dimensions gels and for a proper silver staining of 2-D maps with practically no background deposition.  相似文献   

2.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

3.
A new technique for generatiing extended pH gradients (3–4 pH units) in Immobiline gels for isoelectric separations is described. A five-chamber gradient mixer has been built, based on the ‘Varigard’-type mixers of Peterson and Sober (Anal. Chem. 31, 1959, 857–862). Each chamber contains one of the following Immobilines, in this order: pK values 4.4, 4.6, 6.2, 7.0 and 8.5, titrated in the pH 4–8 interval with non-buffering Immobilines pK 9.3 (in the case of the two acidic Immobilines) and pK 3.6 (in the case of the three basic Immobilines). In this way it is possible to cast, in a highly reproducible way, an immobilized pH gradient in thepH range 4.0 to 7.5, which should be ideal for isoelectric separations in the first dimension of two-dimensional techniques. A computer program is also described which, given the molarities and pK values of the different Immobilines in the chambers of the Varigrad mixer, can generate the theoretical pH profile, together with the buffering capacity (β) and ionic strength (I) courses.  相似文献   

4.
Several examples of two-step sequential reactions exist where, because of the poor equilibrium conversion by the first reaction, it is desirable to conduct the two reactions simultaneously. In such a scheme, the product of the first reaction is continuously removed by the second reaction, thus not allowing the first reaction to approach chemical equilibrium. Therefore, the first reaction is allowed to proceed in the desired direction at an appreciable rate. However, in many biochemical applications where enzyme catalysts are involved, the enzyme's activities are strong functions of pH. Where the pH optima of the first and second reaction differ by three to four units, the above reaction scheme would be difficult to implement. In these cases, the two reactions can be separated by a thin permeable membrane across which the desired pH gradient is maintained. In this article, it was shown, both by theory and experiment, that a thin, flat membrane of immobilized urease can accomplish this goal when one face of the membrane is exposed to the acidic bulk solution (pH(b) = 4.5) containing a small quantity of urea (0.01 M). In this particular case, the ammonia that was produced in the membrane consumed the incoming hydrogen ions and thus maintained the desired pH gradient. Experimental results indicate that with sufficient urease loading, the face of the membrane opposite to the bulk solution could be maintained at a pH that would allow many enzymes to realize their maximum activities ( approximately 7.5). It was also found that this pH gradient could be maintained even in the presence of a buffer, which greatly enhances the transport of protons into the membrane. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
PI variants and PI M subtypes were examined by isoelectric focusing in a preformed immobilized pH gradient. Conditions were found that permit reliable classification of PI variants and of most PI M subtypes: the pH gradient ranges from 4.3 to 4.8 on a polyacrylamide gel with a length of 20 cm and a separation distance of approximately 16-17 cm (delta pH = 0.025 U/cm). The PI phenotypes observed are presented.  相似文献   

6.
As a follow-up of a previous work on two-dimensional map analysis utilizing soft (< 4%T) immobilized pH gradient (IPG) matrices in the first dimension (Candiano et al., Electrophoresis 2002, 23, 292-297), we have further optimized the preparation of such dilute IPG gels. One important step for obtaining an even reswelling of the entire IPG strip along the pH 3-10 interval is a washing step in 100 mM citric acid. It appears as though after rinsing off the excess acid in distilled water, a gradient of this tricarboxylic acid remains trapped into the IPG matrix, from almost nil at the acidic gel region to substantially higher amounts in its basic counterpart. This gradient helps in obtaining a uniform reswelling of the IPG strip, since carboxyl groups are more heavily hydrated than amino groups. The combined effects of uniform reswelling and of diluting the gel matrix favor penetration of large macromolecules (> 200 kDa) and allow for better spot resolution and for the display of a substantially higher number of spots also in the 30-60 000 Da region. A delipidation step in tri-n-butylphosphate:acetone:methanol (1:12:1) appears to substantially improve spot focusing and greatly diminish streaking and smearing of spots in all regions of the pH gradient.  相似文献   

7.
We have recently described an apparatus for protein purification based on a segmented Immobiline gel, having one or more liquid interlayers in between. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow chamber, and focusing the impurities in an Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. We now demonstrate that the present apparatus can be efficiently used for protein desalting. Hemoglobin A samples, containing 50 mM NaCl or 50 mM ammonium acetate, could be efficiently desalted in 2 h of recycling, after which the total salt content had decreased to less than 0.005 mM (a salt decrement of more than 10,000 fold the initial input). However, with polyprotic buffers (sulphate, citrate, phosphate, oligoamines) the desalting process was much slower, typically of the order of 20 h, possibly due to interaction of these species with the surrounding Immobiline matrix. In this last case, outside pH control (e.g. with a pH-stat) is necessary during protein purification, as, due to the faster removal of the monovalent counterion, the solution in the recycling chamber can become rather acidic or alkaline. It is demonstrated that the 2 extremities of the Immobiline segments facing the sample recycling chamber act indeed as isoelectric membranes, having a good buffering capacity, preventing the protein macroion from leaving the chamber by continuously titrating it to its isoelectric point.  相似文献   

8.
A protocol was established for two-dimensional gel electrophoresis (2-DE) of barley seed and malt proteins in the pH range of 6-11. Proteins extracted from flour in a low-salt buffer were focused after cup-loading onto IPG strips. Successful separation in the second dimension was achieved using gradient gels in a horizontal SDS-PAGE system. Silver staining of gels visualized around 380 (seed) and 500 (malt) spots. Thirty-seven different proteins from seeds were identified in 60 spots, among these 46 were visualized also in the malt 2-D pattern. Proteins were identified by peptide mass fingerprinting and by tandem MS sequencing after in-gel digestion by trypsin. In addition, the N-terminal sequence of 10 different proteins from 11 spots was determined after electroblotting to a polyvinylidene difluoride (PVDF) membrane. Five identified proteins (in 9 spots) are involved in glycolysis, 12 in defence against pathogens (21 spots), 4 in storage, folding, and synthesis of proteins, and in nitrogen metabolism (5 spots), 6 in carbohydrate metabolism (11 spots), and 4 in stress and detoxification (9 spots). Six proteins (7 spots) were not grouped in these categories, and 3 were not ascribed a function. The presented 2-D patterns and identifications will be used to describe proteome differences between cultivars and changes during malting.  相似文献   

9.
W B?r  A Kratzer 《Human heredity》1988,38(2):106-110
The distribution of the phenotypes of alpha-1-antitrypsin (Pi) was investigated in a Swiss population sample of 1,148 unrelated individuals using isoelectric focusing with a immobilized pH gradient. A short focusing period of only 2 h using high-voltage is an additional asset of this modified method. All common as well as the rarer phenotypes were reliably detected. However, detection of Pi M4 required a narrower pH range as chosen for routine work. The allele frequencies found were: PiM1:0.7121; PiM2:0.1381; PiM3:0.0976; PiS:0.0383; PiZ:0.0113; PiVar(I, N, V.Vdon):0.0026.  相似文献   

10.
Streaking is a severe problem when narrow range basic immobilized pH gradient strips are used as the first dimension of two-dimensional (2-D) electrophoresis. It is demonstrated that this cysteinyl related streaking is eliminated when focusing is done in the presence of hydroxyethyl disulfide (DeStreak). Use of DeStreak also results in 2-D maps with simplified spot patterns and improved reproducibility.  相似文献   

11.
A modification of the previously described apparatus (Faupel et al. (1987) J. Biochem. Biophys. Methods 15, 147-162), for recycling isoelectric focusing in a segmented immobilized pH gradient, is here reported. The most important improvements are: (1) a horizontal, vs. the previously vertical assembly; (2) a reduction of the thickness of the central flow chamber to 6 mm, vs. the previous 3 cm length and (3) the introduction, at both gel extremities of each Immobiline segment, of polypropylene filters, thus efficiently blocking the gel in situ. The advantages are: (i) the spontaneous removal of air bubbles, which in the vertical apparatus tend to accumulate in the ceiling of the flow chamber and to obstruct the flow of electric current; (ii) a more efficient hydraulic flow with a reduced chance of heating the liquid stream in the flow chamber, due to its reduced length along the separation path and (iii) a reduced risk of gel detachment from the tube walls, due to osmotic swelling caused by focused protein zones in the gel phase and by the fixed Immobiline charges in the polyacrylamide matrix.  相似文献   

12.
13.
Membrane proteins are of particular interest in proteomics because of their potential therapeutic utility. Past proteomic approaches used to investigate membrane proteins have only been partially successful at providing a comprehensive analysis due to the inherently hydrophobic nature and low abundance for some of these proteins. Recently, these difficulties have been improved by analyzing membrane protein enriched samples using shotgun proteomics. In addition, the recent application of methanol-assisted trypsin digestion of membrane proteins has been shown to be a method to improve membrane protein identifications. In this study, a comparison of different concentrations of methanol was assessed for assisting membrane protein digestion with trypsin prior to analysis using a gel-based shotgun proteomics approach called peptide immobilized pH gradient isoelectric focusing (IPG-IEF). We demonstrate the use of peptide IEF on pH 3-10 IPG strips as the first dimension of two-dimensional shotgun proteomics for protein identifications from the membrane fraction of rat liver. Tryptic digestion of proteins was carried out in varying concentrations of methanol in 10 mM ammonium bicarbonate: 0% (v/v), 40% (v/v), and 60% (v/v). A total of 800 proteins were identified from 60% (v/v) methanol, which increased the protein identifications by 17% and 14% compared to 0% (v/v) methanol and 40% (v/v) methanol assisted digestion, respectively. In total, 1549 nonredundant proteins were identified from all three concentrations of methanol including 690 (42%) integral membrane proteins of which 626 of these proteins contained at least one transmembrane domain. Peptide IPG-IEF separation of peptides was successful as the peptides were separated into discrete pI regions with high resolution. The results from this study prove utility of 60% (v/v) methanol assisted digestion in conjunction with peptide IPG-IEF as an optimal shotgun proteomics technique for the separation and identification of previously unreported membrane proteins.  相似文献   

14.
15.
Summary A dual staining technique has been presented for the histochemical characterization of some sulfated mucopolysaccharides. It is a combined alcian blue (pH 1.0)-ruthenium red (pH 2.5) staining method which colors most sulfated mucopolysaccharides tested purple or purplish blue. A series of histochemical experiments using histological sections and casein films containing acidic polysaccharides of known chemical structure indicate that reactive sulfate and carboxyl groupings of polysaccharides are responsible, to an appreciable degree, for the alcianophilia and affinity towards ruthenium red of the substances respectively. A hypothesis is advanced as to the mechanism whereby ruthenium red binds anionic groupings of mucopolysaccharides.This investigation was supported by a Grant-in-Aid from the Japanese Ministry of Education (1968).  相似文献   

16.
17.
18.
A new method is described for preparative protein purification, based on isoelectric focusing on immobilized pH gradients. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow-chamber, and focusing the impurities in the Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. The sample flow-chamber is built in the centre of the apparatus, and is coupled to an upper and lower segment of an immobilized pH gradient. The protein to be purified is kept isoelectric in the flow-chamber and prevented from leaving it by arranging for the extremities of the immobilized pH gradient, forming the ceiling and the floor of this chamber, to have isoelectric points just higher (e.g. +0.05 pH units, on the cathodic side) and just lower (e.g. -0.05 pH units, on the anodic side) than the known pI of the species of interest. Macromolecules and small ions leave the flow chamber at a rate corresponding to a first order reaction kinetics (the plot of log C vs. time being linear). In general, for macromolecules, 12 h of recycling under current allow removal of 95% impurities. After 24 h of recycling, the protein of interest is more than 99.5% pure. The recoveries are very high (approaching 100%) as the sample under purification never enters the Immobiline gel and thus does not have to be extracted from a hydrophilic matrix, as typical of preparative gel electrophoresis.  相似文献   

19.
A new method of protein electrophoresis is described here. Electrophoretic separation is performed in gel media with uniform concentration of immobilized charges, combined with porosity gradient directed against protein movement. Successful separation becomes possible due to the effect of strong sample zone compression; the latter effect is connected with complex conductivity profile dynamics in a gel system containing immobilized charges. Immobilized buffers combined with porosity gradient provide an opportunity of protein discrimination based on molecular size, while in the case of uniform gel concentration the separation is based on mobility differences and strongly affected by non-uniform electric field strength profile. The proposed method does not require ionic detergent for protein separation according to their molecular weight.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号