首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study was initiated to develop inhibitors of the intestinal H(+)/peptide symporter. We provide evidence that the dipeptide derivative Lys[Z(NO(2))]-Pro is an effective competitive inhibitor of mammalian PEPT1 with an apparent binding affinity of 5-10 microM. Characterization of the interaction of Lys[Z(NO(2))]-Pro with the substrate binding domain of PEPT1 has been performed in (a) monolayer cultures of human Caco-2 cells expressing PEPT1, (b) transgenic Pichia pastoris cells expressing PEPT1, and (c) Xenopus laevis oocytes expressing PEPT1. By competitive uptake studies with radiolabeled dipeptides, HPLC analysis of Lys[Z(NO(2))]-Pro in cells, and electrophysiological techniques, we unequivocally show that Lys[Z(NO(2))]-Pro binds with high affinity to PEPT1, competes competitively with various dipeptides for uptake into cells, but is not transported itself. Lack of transport was substantiated by the absence of Lys[Z(NO(2))]-Pro in Caco-2 cell extracts as determined by HPLC analysis, and by the absence of any positive inward currents in oocytes when exposed to the inhibitor. The fact that Lys[Z(NO(2))]-Pro can bind to PEPT1 from the extracellular as well as the intracellular site was shown in the oocyte expression system by a strong inhibition of dipeptide-induced currents under voltage clamp conditions. Our findings serve as a starting point for the identification of the substrate binding domain in the PEPT1 protein as well as for studies on the physiological and pharmacological role of PEPT1.  相似文献   

2.
In this study we described the design, rational synthesis and functional characterization of a novel radiolabeled hydrolysis-resistant high-affinity substrate for H(+)/peptide cotransporters. L-4,4'-Biphenylalanyl-L-Proline (Bip-Pro) was synthesized according to standard procedures in peptide chemistry. The interaction of Bip-Pro with H(+)/peptide cotransporters was determined in intestinal Caco-2 cells constitutively expressing human H(+)/peptide cotransporter 1 (PEPT1) and in renal SKPT cells constitutively expressing rat H(+)/peptide cotransporter 2 (PEPT2). Bip-Pro inhibited the [(14)C]Gly-Sar uptake via PEPT1 and PEPT2 with exceptional high affinity (K(i) = 24 microm and 3.4 microm, respectively) in a competitive manner. By employing the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT1 or PEPT2 it was found that Bip-Pro was transported by both peptide transporters although to a much lower extent than the reference substrate, Gly-Gln. Bip-Pro remained intact to > 98% for at least 8 h when incubated with intact cell monolayers. Bip-[(3)H]Pro uptake into SKPT cells was linear for up to 30 min and pH dependent with a maximum at extracellular pH 6.0. Uptake was strongly inhibited, not only by unlabeled Bip-Pro but also by known peptide transporter substrates such as dipeptides, cefadroxil, Ala-4-nitroanilide and delta-aminolevulinic acid, but not by glycine. Bip-Pro uptake in SKPT cells was saturable with a Michaelis-Menten constant (K(t)) of 7.6 microm and a maximal velocity (V(max)) of 1.1 nmol x 30 min(-1) x mg of protein(-1). Hence, the uptake of Bip-Pro by PEPT2 is a high-affinity, low-capacity process in comparison to the uptake of Gly-Sar. We conclude that Bip-[(3)H]Pro is a valuable substrate for both mechanistic and structural studies of H(+)/peptide transporter proteins.  相似文献   

3.
We investigated the interaction of rat PEPT2, a high-affinity peptide transporter, with neutral, anionic, and cationic dipeptides using electrophysiological approaches as well as tracer uptake methods. D-Phe-L-Gln (neutral), D-Phe-L-Glu (anionic), and D-Phe-L-Lys (cationic) were used as representative, non-hydrolyzable, dipeptides. All three dipeptides induced H+-dependent inward currents in Xenopus laevis oocytes heterologously expressing rat PEPT2. The H+:peptide stoichiometry was 1:1 in each case. A simultaneous measurement of radiolabeled dipeptide influx and charge transfer in the same oocyte indicated a transfer of one net positive charge into the oocyte per transfer of one peptide molecule irrespective of the charged nature of the peptide. We conclude that the zwitterionic peptides are preferentially recognized by PEPT2 as transportable substrates and that the proton/peptide stoichiometry is 1 for the transport process.  相似文献   

4.
Cai H  Hauser M  Naider F  Becker JM 《Eukaryotic cell》2007,6(10):1805-1813
Dal5p has been shown previously to act as an allantoate/ureidosuccinate permease and to play a role in the utilization of certain dipeptides as a nitrogen source in Saccharomyces cerevisiae. Here, we provide direct evidence that dipeptides are transported by Dal5p, although the affinity of Dal5p for allantoate and ureidosuccinate is higher than that for dipeptides. Allantoate, ureidosuccinate, and to a lesser extent allantoin competed with dipeptide transport by reducing the toxicity of the peptide Ala-Eth and decreasing the accumulation of [(14)C]Gly-Leu. In contrast to the well-studied di/tripeptide transporter Ptr2p, whose substrate specificity is very broad, Dal5p preferred to transport non-N-end rule dipeptides. S. cerevisiae W303 was sensitive to the toxic peptide Ala-Eth (non-N-end rule peptide) but not Leu-Eth (N-end rule peptide). Non-N-end rule dipeptides showed better competition with the uptake of [(14)C]Gly-Leu than N-end rule dipeptides. Similar to the regulation of PTR2, DAL5 expression was influenced by the addition of Leu and by the CUP9 gene. However, DAL5 expression was downregulated in the presence of leucine and the absence of CUP9, whereas PTR2 was upregulated. Toxic dipeptide and uptake assays indicated that either Ptr2p or Dal5p was predominantly used for dipeptide transport in the common laboratory strains S288c and W303, respectively. These studies highlight the complementary activities of two dipeptide transport systems under different regulatory controls in common laboratory yeast strains, suggesting that dipeptide transport pathways evolved to respond to different environmental conditions.  相似文献   

5.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

6.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

7.
The peptide transporter PEPT2 mediates the cellular uptake of di- and tripeptides and selected drugs by proton-substrate cotransport across the plasma membrane. PEPT2 was functionally identified initially in the apical membrane of renal tubular cells but was later shown to be expressed in other tissues also. To investigate the physiological importance of PEPT2 and for a detailed analysis of the protein expression sites, we generated a Pept2 knockout mouse line in which the Pept2 gene was disrupted by insertion of a beta-galactosidase gene under the control of the PEPT2 promoter. The Pept2(-/-) mice showed no obvious phenotypic abnormalities but also no adaptive upregulation in the expression level of related genes in the kidney. The importance of PEPT2 in the reabsorption of filtered dipeptides was demonstrated in knockout animals by significantly reduced renal accumulation of a fluorophore-labeled and a radiolabeled dipeptide after in vivo administration of the tracers. This indicates that PEPT2 is the main system responsible for tubular reabsorption of peptide-bound amino acids, although this does not lead to major changes in renal excretion of protein or free amino acids.  相似文献   

8.
The Arabidopsis AtPTR2 and fungal fPTR2 genes, which encode H+/dipeptide cotransporters, belong to two different subgroups of the peptide transporter (PTR) (NRT1) family. In this study, the kinetics, substrate specificity, stoichiometry, and voltage dependence of these two transporters expressed in Xenopus oocytes were investigated using the two-microelectrode voltage-clamp method. The results showed that: 1) although AtPTR2 belongs to the same PTR family subgroup as certain H+/nitrate cotransporters, neither AtPTR2 nor fPTR2 exhibited any nitrate transporting activity; 2) AtPTR2 and fPTR2 transported a wide spectrum of dipeptides with apparent affinity constants in the range of 30 microM to 3 mM, the affinity being dependent on the side chain structure of both the N- and C-terminal amino acids; 3) larger maximal currents (Imax) were evoked by positively charged dipeptides in AtPTR2- or fPTR2-injected oocytes; 4) a major difference between AtPTR2 and fPTR2 was that, whereas fPTR2 exhibited low Ala-Asp- transporting activity, AtPTR2 transported Ala-Asp- as efficiently as some of the positively charged dipeptides; 5) kinetic analysis suggested that both fPTR2 and AtPTR2 transported by a random binding, simultaneous transport mechanism. The results also showed that AtPTR2 and fPTR2 were quite distinct from PepT1 and PepT2, two well characterized animal PTR transporters in terms of order of binding of substrate and proton(s), pH sensitivity, and voltage dependence.  相似文献   

9.
The transport of dipeptides and beta-lactam antibiotics across the rat renal basolateral membrane was examined. The initial uptake of glycylsarcosine and cefadroxil by rat renal basolateral membrane vesicles was inhibited by the presence of all the di- and tripeptides and beta-lactam antibiotics that were tested in this study. However, the uptake of both substrates was not inhibited by glycine, an amino acid. The initial uptake of zwitterionic beta-lactam antibiotics, cefadroxil, cephradine, and cephalexin, was stimulated by preloaded glycylsarcosine (countertransport effect). On the other hand, the uptake of dianionic beta-lactam antibiotics, ceftibuten and cefixime, was not affected. A concentration-dependent initial uptake of glycylsarcosine and cefadroxil suggested the existence of a carrier-mediated mechanism, whereas the transport of ceftibuten did not show any saturated uptake. The transporter that participates in the permeation of dipeptides and beta-lactam antibiotics across basolateral membranes showed lower affinity than did PEPT1 and PEPT2. This is the first study that showed an evidence for a peptide transporter, expressed in the rat renal basolateral membrane, that recognizes zwitterionic beta-lactam antibiotics using basolateral membrane vesicles isolated from normal rat kidney.  相似文献   

10.
The nature of protein breakdown products and peptidomimetic drugs such as beta-lactams is crucial for their transmembrane transport across apical enterocyte membranes, which is accomplished by the pH-dependent high-capacity oligopeptide transporter PEPT1. To visualize oligopeptide transporter-mediated uptake of oligopeptides, an ex vivo assay using the fluorophore-conjugated dipeptide derivative D-Ala-Lys-N(epsilon)-7-amino-4-methylcoumarin-3-acetic acid (D-Ala-Lys-AMCA) was established in the murine small intestine and compared with immunohistochemistry for PEPT1 in murine and human small intestine. D-Ala-Lys-AMCA was accumulated by enterocytes throughout all segments of the murine small intestine, with decreasing intensity from the top to the base of the villi. Goblet cells did not show specific uptake. Inhibition studies revealed competitive inhibition by the beta-lactam cefadroxil, the angiotensin-converting enzyme inhibitor captopril, and the dipeptide glycyl-glutamine. Controls were performed using either the inhibitor diethylpyrocarbonate or an incubation temperature of 4 degrees C to exclude unspecific uptake. Immunohistochemistry for PEPT1 localized immunoreactivity to the enterocytes, with the highest intensity at the apical membrane. This is the first study that visualizes dipeptide transport across the mammalian intestine and indicates that uptake assays using D-Ala-Lys-AMCA might be useful for characterizing PEPT1-specific substrates or inhibitors.  相似文献   

11.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

12.
Active transport of dipeptides in rabbit renal brush-border membrane vesicles is energized by an inward-directed H+ gradient rather than a Na+ gradient. We examined the effects of treatment of membrane vesicles with diethylpyrocarbonate (DEP), a reagent specific for histidyl groups, on this H+ gradient-dependent dipeptide uptake. DEP inhibited the uptake of all three dipeptides studied, Gly-sarcosine, Gly-Gly, and Gly-Pro (Ki = 0.6-0.9 mM), and the inhibition was noncompetitive. The dipeptide transporter could be protected from DEP inhibition by the presence of dipeptide substrates during the treatment of the vesicles with the inhibitor, whereas leucine plus Na+ failed to offer the protection. Na+-dependent leucine uptake was also inhibited by DEP (Ki = 2.5 mM) and the amino acid transporter could be protected from the inhibition by leucine plus Na+, but not by dipeptides. Treatment of membrane vesicles with the thiol group-specific reagents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole,3-bromopyruvate, p-chloromercuribenzenesulfonic acid, and N-ethylmaleimide, also inhibited the H+ gradient-dependent dipeptide uptake. The potency of their inhibition was in the order: 7-chloro-4-nitrobenz-2-oxa-1,3-diazol greater than p-chloromercuribenzenesulfonic acid greater than 3-bromopyruvate greater than N-ethylmaleimide. The inhibition could be reversed in some cases by treatment of the membrane vesicles with reducing agents such as 2,3-dimercaptopropanol following incubation with the inhibitors. Dipeptide substrates could protect the dipeptide transporter from the inhibition. We conclude that histidyl and thiol groups are present at or near the substrate-binding site of the rabbit renal dipeptide transporter.  相似文献   

13.
YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes in specificity in terms of uptake inhibition. Most strikingly, changing the YjdL specific Asp392 to the conserved Ser in YjdL obliterated the preference for a positively charged C-terminal residue. Based on this unique finding and previously published results indicating that the dipeptide N-terminus may interact with Glu388, a preliminary orientation model of a dipeptide in the YjdL cavity is presented. Single site mutations of particularly Ala281 and Trp278 support the presented orientation. A dipeptide bound in the cavity of YjdL appears to be oriented such that the N-terminal side chain protrudes into a sub pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278. In the presented orientation model, Tyr25 and Tyr58 both appear to be in proximity of the dipeptide backbone while Lys117 appears to be in proximity of the peptide C-terminus. Mutational studies of these conserved residues highlight their functional importance.  相似文献   

14.
To elucidate the decisive structural factors relevant for dipeptide-carrier interaction, the affinity of short amide and imide derivatives for the intestinal H+/peptide symporter (PEPT1) was investigated by measuring their ability to inhibit Gly-Sar transport in Caco-2 cells. Dipeptides with proline or alanine in the C-terminal position displayed affinity constants (Ki) of 0.15-1.2 mM and 0.08-9.5 mM, respectively. There was no clear relationship between hydrophobicity, size or ionization status of the N-terminal amino acid and the affinity of the dipeptides. However, analyzing the individual peptide bond conformations of Xaa-Pro dipeptides, a striking correlation between the cis/trans ratios (trans contents 24-70%) and the affinity constants was observed. After correcting the Ki values for the incompetent cis isomers, the Ki corr values of most dipeptides were in a small range of 0.1-0.16 mM. This result revealed the decisive role of peptide bond conformation even for a transport protein that is quite promiscuous in substrate translocation. When measuring affinity constants of Xaa-Pro and Xaa-Sar dipeptides, the cis/trans ratios cannot be ignored. Lower affinities of Lys-Pro, Arg-Pro and Pro-Pro indicate that additional molecular factors affect their binding at PEPT1. The Ki values obtained for the corresponding Xaa-Ala dipeptides support this conclusion. Potential substrates or inhibitors of peptide transport were found among Xaa-piperidides and Xaa-thiazolidides. Dipeptides with N-terminal proline displayed a very diverse affinity profile. However, in contrast to current knowledge, several Pro-Xaa dipeptides such as Pro-Leu, Pro-Tyr and Pro-Pro are recognized by PEPT1 with appreciable affinities. Binding seems mainly determined by the hydrophobicity of the C-terminal amino acid and the rigidity of the structure.  相似文献   

15.
The transport of [14C]Gly-Pro was examined using a mutant of Salmonella typhimurium (strain TN87) deficient in an X-Pro dipeptidase and an X-Pro-Y iminopeptidase. The dipeptide was taken up by one saturable transport system having a Km of 5.3-10(-7)M and a V of 1.4 nmol/mg dry wt cell per min. The uptake of Gly-Pro was not inhibited by amino acids or tripeptides and the transport system exhibited a rather broad side chain specificity for dipeptides. Dipeptides containing hydrophobic residues were the most potent inhibitors of this dipeptide transport system exhibiting Ki values between 10(-8) and 10(-7) M. In contrast, dipeptides containing glycine residues were particularly weak inhibitors. Finally, Gly-Pro was found to be in the intact form inside the cell and was concentrated more than 1000-fold.  相似文献   

16.
The transcellular transport of oligopeptides across intestinal epithelial cells has attracted considerable interest in investigations into how biologically active peptides express diverse physiological functions in the body. It has been postulated that the tripeptide, Gly-Pro-Hyp, which is frequently found in collagen sequences, exhibits bioactivity. However, the mechanism of uptake of dietary di- and tripeptides by intestinal epithelial cells is not well understood. In this study, we used porcine brush-border membrane (BBM) vesicles to assess Gly-Pro-Hyp uptake, because these vesicles can structurally and functionally mimic in vivo conditions of human intestinal apical membranes. The present study demonstrated the time-dependent degradation of this tripeptide into the free-form Gly and a dipeptide, Pro-Hyp, on the apical side of the BBM vesicles. In parallel with the hydrolysis of the tripeptide, the dipeptide Pro-Hyp was identified in the BBM intravesicular space environment. We found that the transcellular transport of Pro-Hyp across the BBM was inhibited by the addition of a competitive substrate (Gly-Pro) for peptide transporter (PEPT1) and was pH-dependent. These results indicate that Gly-Pro-Hyp can be partially hydrolyzed by the brush-border membrane-bound aminopeptidase N to remove Gly, and that the resulting Pro-Hyp is, in part, transported into the small intestinal epithelial cells via the H+-coupled PEPT1. Gly-Pro-Hyp cannot cross the epithelial apical membrane in an intact form, and Pro-Hyp is highly resistant to hydrolysis by intestinal mucosal apical proteases.  相似文献   

17.
This study describes for the first time the presence of H+-peptide cotransport in cells of the bile duct. Uptake of [glycine-1-14C]glycylsarcosine ([14C]Gly-Sar) in human extrahepatic cholangiocarcinoma SK-ChA-1 cells was stimulated sevenfold by an inwardly directed H+ gradient. Transport was mediated by a low-affinity system with a transport constant (Kt) value of 1.1 mM. Several dipeptides, cefadroxil, and delta-aminolevulinic acid, but not glycine and glutathione, were strong inhibitors of Gly-Sar uptake. SK-ChA-1 cells formed tight, polarized monolayers on permeable membranes. The transepithelial electrical resistance was 856 +/- 29 omega x cm(2). The transepithelial flux of [14C]Gly-Sar in apical-to-basolateral direction exceeded the basolateral-to-apical flux 11-fold. Uptake was 20-fold higher from the apical side. RT-PCR analysis using primer pairs specific for the intestinal-type peptide transporter (PEPT1) or kidney-type (PEPT2) revealed that the transport system expressed in SK-ChA-1 and also in cells of the native rabbit bile duct is PEPT1. Immunohistochemistry localized PEPT1 to the apical membrane of cholangiocytes of mouse extrahepatic biliary duct. We conclude that the cells of the mammalian extrahepatic biliary tract epithelium express the intestinal-type H+-peptide cotransporter in their apical membrane. SK-ChA-1 cells represent a convenient model to study the physiological and clinical aspects of peptide transport in cholangiocytes.  相似文献   

18.
5-Aminolevulinic acid (5-ALA) is a precursor of porphyrins and heme that has been implicated in the neuropsychiatric symptoms associated with porphyrias. It is also being used clinically to delineate malignant gliomas. The blood-CSF barrier may be an important interface for 5-ALA transport between blood and brain as in vivo studies have indicated 5-ALA is taken up by the choroid plexuses whereas the normal blood-brain barrier appears to be relatively impermeable. This study examines the mechanisms of 5-[(3)H]ALA uptake into isolated rat lateral ventricle choroid plexuses. Results suggest that there are two uptake mechanisms. The first was a Na(+)-independent uptake system that was pH dependent (being stimulated at low pH). Uptake was inhibited by the dipeptide Gly-Gly and by cefadroxil, an alpha-amino-containing cephalosporin. These properties are the same as the proton-dependent peptide transporters PEPT1 and PEPT2, which have recently been shown to transport 5-ALA in frog oocyte expression experiments. Choroid plexus uptake was not inhibited by captopril, a PEPT1 inhibitor, suggesting PEPT2-mediated uptake. The presence of PEPT2 and absence of PEPT1 in the choroid plexus were confirmed by western blotting. The second potential mechanism was both Na(+) and HCO(3)(-) dependent and appears to be an organic anion transporter, although it is possible that removal of Na(+) and HCO(3)(-) may indirectly affect PEPT2 by affecting intracellular pH. The presence of PEPT2 and a putative Na(+)/HCO(3)(-)-dependent organic anion transporter is important not only for an understanding of 5-ALA movement between blood and brain but also because these transporters may affect the distribution of a number of drugs between blood and CSF.  相似文献   

19.
The presence of multiple oligopeptide transporters in brain has generated considerable interest as to their physiological role in neuropeptide homeostasis, pharmacologic importance, and potential as a target for drug delivery through the blood-brain and blood-cerebrospinal fluid barriers. To understand further the purpose of specific peptide transporters in brain, we have generated PEPT2-deficient mice by targeted gene disruption. Homozygous PepT2 null mice lacked expression of PEPT2 mRNA and protein in choroid plexus and kidney, tissues in which PepT2 is normally expressed, whereas heterozygous mice displayed PepT2 expression levels that were intermediate between those of wild-type and homozygous null animals. Mutant PepT2 null mice were found to be viable, grew to normal size and weight, and were without obvious kidney or brain abnormalities. Notwithstanding the lack of apparent biological effects, the proton-stimulated uptake of 1.9 microm glycylsarcosine (a model, hydrolysis-resistant dipeptide) in isolated choroid plexus was essentially ablated (i.e. residual activity of 10.9 and 3.9% at 5 and 30 min, respectively). These novel findings provide strong evidence that, under the experimental conditions of this study, PEPT2 is the primary member of the peptide transporter family responsible for dipeptide uptake in choroid plexus tissue.  相似文献   

20.
The lactating mammary gland utilizes free plasma amino acids as well as those derived by hydrolysis from circulating short-chain peptides for protein synthesis. Apart from the major route of amino acid nitrogen delivery to the gland by the various transporters for free amino acids, it has been suggested that dipeptides may also be taken up in intact form to serve as a source of amino acids. The identification of peptide transporters in the mammary gland may therefore provide new insights into protein metabolism and secretion by the gland. The expression and distribution of the high-affinity type proton-coupled peptide transporter PEPT2 were investigated in rat lactating mammary gland as well as in human epithelial cells derived from breast milk. By use of RT-PCR, PEPT2 mRNA was detected in rat mammary gland extracts and human milk epithelial cells. The expression pattern of PEPT2 mRNA revealed a localization in epithelial cells of ducts and glands by nonisotopic high resolution in situ hybridization. In addition, immunohistochemistry was carried out and showed transporter immunoreactivity in the same epithelial cells of the glands and ducts. In addition, two-electrode voltage clamp recordings using PEPT2-expressing Xenopus laevis oocytes demonstrated positive inward currents induced by selected dipeptides that may play a role in aminonitrogen handling in mammalian mammary gland. Taken together, these data suggest that PEPT2 is expressed in mammary gland epithelia, in which it may contribute to the reuptake of short-chain peptides derived from hydrolysis of milk proteins secreted into the lumen. Whereas PEPT2 also transports a variety of drugs, such as selected beta-lactams, angiotensin-converting enzyme inhibitors, and antiviral and anticancer metabolites, their efficient reabsorption via PEPT2 may reduce the burden of xenobiotics in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号