首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Binding to human platelets of radioiodinated human fibrinogen and fragments X, Y, D, D1 dimer and E was studied to determine the domain of the fibrinogen molecule responsible for binding to the platelet receptor. Although the fragments did not bind, some wer able to complete for the binding of fibrinogen to platelets. It was postulated that the fragments bound to fibrinogen and subsequently interfered with its binding to the receptor. Two approaches were developed to test this hypothesis. In the first technique, molecular exclusion on Sephacryl S-200 superfine was utilized to examine the interaction of radiolabeled fragments with fibrinogen. In the second seties of studies, fibrinogen-Sepharose was prepared and the binding of degradation products directly determined. A spin dialysis apparatus was employed in each case to achieve rapid separation of bound and free radioligand. These studies demonstrated that fragments D and E bind to fibrinogen. Therefore, the mechanism by which degradation products interfere with fibrinogen binding to the platelet receptor is ligand-ligand interaction rather than binding of the fragments to the receptor. Since none of the radiolabeled degradation products bound to platelets, it appears that receptor recognition requires the intact molecule.  相似文献   

2.
Thrombospondin synthesized and secreted by human endothelial cells in culture binds specifically to fibronectin immobilized on Sepharose beads. It can also bind to immobilized platelet-derived thrombospondin but not to immobilized gelatin or albumin. These interactions are not dependent on the presence of divalent cations or of other secreted materials. Purified platelet thrombospondin binds to fibronectin and fibrinogen immobilized on plastic surfaces with dissociation constants of 1.12 +/- 0.37 X 10(-7) M and 1.27 +/- 0.41 X 10(-7) M respectively, and to thrombospondin immobilized on plastic with dissociation constant of 4.82 +/- 1.01 X 10(-7) M. The affinities of interaction are not significantly affected by removal of divalent cations. Soluble fibrinogen inhibits binding of thrombospondin to fibronectin regardless of which of the latter two is surface-bound. Thrombospondin-fibronectin interaction is also inhibited by soluble thrombospondin. The binding of soluble thrombospondin to surface-bound fibrinogen is inhibited both by soluble fibronectin and soluble fibrinogen. These results suggest that thrombospondin plays a role both in platelet-platelet aggregation and in platelet-substratum adhesion, and that it may also take part in the construction of the extracellular matrix.  相似文献   

3.
Characteristics of collagen-induced fibrinogen binding to human platelets   总被引:4,自引:0,他引:4  
Polymerized type I calf skin collagen induced a time-dependent specific binding of 125I-fibrinogen to washed human platelets. Binding occurred more rapidly in a shaken rather than in an unstirred system. It was linear in the range 0.05-0.3 microM added fibrinogen and was saturated at higher fibrinogen concentrations (more than 0.8 microM). Scatchard analysis showed a single population of binding sites (16530 +/- 5410 per platelet) with a Kd = 0.53 +/- 0.23 microM. Collagen-induced 125I-fibrinogen binding to platelets was completely inhibited by ADP antagonists such as creatine phosphate/creatine phosphokinase and AMP, and partially inhibited by pretreatment of the platelets with aspirin. With both normal and aspirin-treated platelets a close correlation was observed between the amount of 125I-fibrinogen bound and the extent of dense granule secretion. Our results confirm that fibrinogen becomes bound to platelet surface receptors during collagen-induced platelet aggregation and suggest that secreted ADP is an essential cofactor in this process.  相似文献   

4.
Platelet surface glycoproteins IIb-IIIa are considered to function as the binding site for fibrinogen. Fibrinogen binding is essential for platelet aggregation and several amines have been shown to inhibit this binding. The present study compares the binding properties of 125I-fibrinogen and [3H]lysine with platelets activated by the Ca2+ ionophore A23187. Many lines of similarities in the binding properties are apparent; however, several differences were also found. The similarities are listed below and the differences are pointed out in parentheses. Marked enhancement by platelet activation; deficiency of binding by thrombasthenic platelets lacking the glycoproteins IIb-IIIa; saturability (fibrinogen binding approaches saturation at more than 12 microM, within 10 min; lysine binding at more than 100 mM within 1 min); Ca2+-dependence (at 1 mM Ca2+ lysine binding is minute and fibrinogen binding is half-saturated); reversibility; the binding achieved within 10 min is exchangeable; dissociation depends upon time and external ligand concentration; inhibition by the oligoamines His-Lys and Lys4; inhibition by serum from a thrombasthenic patient who developed anti-glycoproteins IIb-IIIa antibodies; specificity; alanine neither binds to activated platelets nor inhibits fibrinogen binding; it thus appears that the lysine which associates with activated platelets is mostly bound onto the surface of the cells rather than being incorporated. Moreover, the major site of lysine binding seems to be the complexed glycoproteins IIb-IIIa.  相似文献   

5.
Platelet surface glycoproteins IIb-IIIa are considered to function as the binding site for fibrinogen. Fibrinogen binding is essential for platelet aggregation and several amines have been shown to inhibit this binding. The present study compares the binding properties of 125I-fibrinogen and [3H]lysine with platelets activated by the Ca2+ ionophore A23187. Many lines of similarities in the binding properties are apparent; however, several differences were also found. The similarities are listed below and the differences are pointed out in parentheses. (a) Marked enhancement by platelet activation; (b) deficiency of binding by thrombasthenic platelets lacking the glycoproteins IIb-IIIa; (c) saturability (fibrinogen binding approaches saturation at more than 12 μM, within 10 min; lysine binding at more than 100 mM within 1 min); (d) Ca2+-dependence (at 1 mM Ca2+ lysine binding is minute and fibrinogen binding is half-saturated); (e) reversibility; the binding achieved within 10 min is exchangeable; dissociation depends upon time and external ligand concentration; (f) inhibition by the oligoamines His-Lys and Lys4; (g) inhibition by serum from a thrombasthenic patient who developed anti-glycoproteins IIb-IIIa antibodies; (h) specificity; alanine neither binds to activated platelets nor inhibits fibrinogen binding; it thus appears that the lysine which associates with activated platelets is mostly bound onto the surface of the cells rather than being incorporated; Moreover, the major site of lysine binding seems to be the complexed glycoproteins IIb-IIIa.  相似文献   

6.
We have studied the binding of fibronectin and its thermolysin fragments to DNA and heparin. Elution of polypeptides bound to DNA-cellulose and heparin-Sepharose affinity chromatography columns was performed by NaCl linear gradients in buffers at different pH and in the presence and absence of calcium ions. The NaCl concentration required to elute fibronectin from both types of column increased as the pH decreased. Fibronectin was not retained on DNA-cellulose or heparin-Sepharose affinity chromatography columns using a buffer containing physiological concentrations of Ca2+, Mg2+ and NaCl, at pH 7.4. On the other hand at pH 6.4 in conditions of physiological ionic strength, fibronectin was retained by both columns, eluting from the DNA-cellulose at 280 mM NaCl and from the heparin-Sepharose column at 210 mM. Furthermore, we have studied the interaction of thermolysin-digested fibronectin both with DNA-cellulose and heparin-Sepharose using the above procedure. The results demonstrate that there are four distinct domains, which interact both with DNA and heparin. We also report here the modulation by pH and Ca2+ ions of the interaction with DNA and heparin of these different domains.  相似文献   

7.
Recently we have shown that heparin and related sulfated polyanions are low-affinity ligands of the kringle domain in the amino-terminal region (ATF) of human urokinase (u-PA), and proposed that this may facilitate loading of u-PA onto its receptor at the focal contacts between adherent cells and their matrix. We have now tested other components of the cell matrix (fibronectin, vitronectin, thrombospondin and laminin-nidogen) for u-PA binding, and found that laminin-nidogen is also a ligand of the u-PA ATF. Direct binding assays and competition binding assays with defined fragments of laminin-nidogen showed that there are u-PA binding sites in fragment E4 of laminin as well as in nidogen. The long-arm terminal domain of laminin (fragment E3), which contains a heparin-binding site, competed for binding of u-PA to immobilised heparin. However nidogen, which does not bind to heparin, also inhibited binding of u-PA to heparin, and this effect was also observed with recombinant nidogen and with a fragment of nidogen lacking the carboxy-terminal domain. Direct binding assays confirmed that u-PA binds to nidogen through a site in the u-PA ATF. We conclude that u-PA binds to laminin-nidogen by interactions involving the ATF region of u-PA, the E4 domain of laminin and the rod or amino-terminal regions of nidogen. Since nidogen is suggested to be an important bridging molecule in the maintenance of the supramolecular organization in basement membranes, the presence of a binding site for u-PA in nidogen indicates a role for plasminogen activation in basement membrane remodelling.  相似文献   

8.
Metal ion binding to human hemopexin   总被引:1,自引:0,他引:1  
Binding of divalent metal ions to human hemopexin (Hx) purified by a new protocol has been characterized by metal ion affinity chromatography and potentiometric titration in the presence and absence of bound protoheme IX. ApoHx was retained by variously charged metal affinity chelate resins in the following order: Ni(2+) > Cu(2+) > Co(2+) > Zn(2+) > Mn(2+). The Hx-heme complex exhibited similar behavior except the order of retention of the complex on Zn(2+)- and Co(2+)-charged columns was reversed. One-dimensional (1)H NMR of apoHx in the presence of Ni(2+) implicates at least two His residues and possibly an Asp, Glu, or Met residue in Ni(2+) binding. Potentiometric titrations establish that apoHx possesses more than two metal ion binding sites and that the capacity and/or affinity for metal ion binding is diminished when heme binds. For most metal ions that have been studied, potentiometric data did not fit to binding isotherms that assume one or two independent binding sites. For Mn(2+), however, these data were consistent with a high-affinity site [K(A) = (15 +/- 3) x 10(6) M(-)(1)] and a low-affinity site (K(A) 相似文献   

9.
The C-terminal domain of human extracellular superoxide dismutase (hEC-SOD) plays a crucial role in the protein's interaction with heparin. Here we investigated this interaction in more detail by comparing the heparin-binding characteristics of two variants of hEC-SOD: the two fusion proteins containing the hEC-SOD C-terminal domain and a synthetic peptide homologous to the C-terminal. The interaction studies were performed using a surface plasmon resonance based technique on a BIAcore system. It should be emphasized that this is a model system. However, the kinetic constants, as measured, are valid in a comparative sense. Comparison of affinities for size-fractionated heparins revealed that octa- or decasaccharides are the smallest heparin fragments that can efficiently interact with the C-terminal domain of hEC-SOD. At physiological salt concentration, and pH 7.4, the hEC-SOD/heparin interaction was found to be of a high-affinity type, with an equilibrium dissociation constant, K(d), of 0.12 microM, which is 700 and 10-20 times lower than the K(d) values for the synthetic peptide and the fusion proteins, respectively. However, when an alpha-helical structure was induced in the synthetic peptide, by addition of 10% trifluoroethanol, the K(d) decreased to 0.64 microM. The differences in the K(d) values were mainly governed by differences in the association rate constants (k(ass)). The hEC-SOD/heparin interaction itself was found to have a fairly high dissociation rate constant (0.1 s(-)(1)), and a very high association rate constant (8 x 10(5) M(-)(1) s(-)(1)), suggesting that the interaction is mainly controlled by the association. These results together with circular dichroism spectra of the synthetic peptide suggest that an alpha-helical structure in the C-terminal is essential for optimal binding to heparin and that other parts of hEC-SOD moderate the affinity. Our data also demonstrate that the tetramerization itself does not substantially increase the affinity.  相似文献   

10.
Extracellular-superoxide dismutase (EC-SOD) is a secretory glycoprotein that is major SOD isozyme in extracellular fluids. We revealed the possible structure of the carbohydrate chain of serum EC-SOD with the serial lectin affinity technique. The structure is a biantennary complex type with an internal fucose residue attached to asparagine-linked N-acetyl-D-glucosamine and with terminal sialic acid linked to N-acetyllactosamine. EC-SOD in plasma is heterogeneous with regard to heparin affinity and can be divided into three fractions: A, without affinity; B, with intermediate affinity; and C, with high affinity. It appeared that this heterogeneity is not dependent on the carbohydrate structure upon comparison of EC-SOD A, B, and C. No effect of the glycopeptidase F treatment of EC-SOD C on its heparin affinity supported the results. A previous report showed that both lysine and arginine residues probably at the C-terminal end, contribute to heparin binding. Recombinant EC-SOD C treated with trypsin or endoproteinase Lys C, which lost three lysine residues (Lys-211, Lys-212, and Lys-220) or one lysine residue (Lys-220) at the C-terminal end, had no or weak affinity for the heparin HPLC column, respectively. The proteinase-treated r-EC-SOD C also lost triple arginine residues which are adjacent to double lysine residues. These results suggest that the heparin-binding site may occur on a cluster of basic amino acids at the C-terminal end of EC-SOD C. EC-SOD is speculated to be primarily synthesized as type C, and types A and B are probably the result of secondary modifications. It appeared that the proteolytic cleavage of the exteriorized lysine- and arginine-rich C-terminal end in vivo is a more important contributory factor to the formation of EC-SOD B and/or EC-SOD A.  相似文献   

11.
Koichi Orino 《Biometals》2013,26(5):789-794
Human fibrinogen is a metal ion-binding protein, but its mechanism of binding with iron and heme has not been elucidated in detail. In this study, human fibrinogen was immobilized on CNBr-activated Sepharose 4B beads. The fibrinogen beads bound hemin (iron–protoporphyrin IX: PPIX) as well as iron ion released from ferrous ammonium sulfate (FAS) more efficiently than Sepharose 4B beads alone. Hemin bound to fibrinogen still exhibited pseudo-peroxidase activity. The affinity of fibrinogen binding to hemin, Sn–PPIX, Zn–PPIX and metal-free PPIX followed the order Sn–PPIX < metal-free PPIX < hemin < Zn–PPIX; PPIX bound more non-specifically to control beads. FAS significantly enhanced the binding of hemin to fibrinogen beads. These results suggest that human fibrinogen directly recognizes iron ion, the PPIX ring and metal ions complexed with the PPIX ring, and that the binding of hemin is augmented by iron ions.  相似文献   

12.
The domain structures and stabilities of fragments isolated from the so-called 'hep 2' region of plasma fibronectin have been investigated by differential scanning calorimetry (DSC) and fluorescence spectroscopy. The 30 kDa hep-2A fragment contains three type III modules (III12 to III14), whereas the 40 kDa hep-2B fragment contains four such modules (III12 to III15). Melting of these fragments at neutral pH was irreversible and accompanied by rapid aggregation. In contrast, melting was completely reversible in 50 mM-glycine at pH 2.7, where DSC measurements revealed the presence of three independently folded domains in 30kDa hep-2A and four in 40 kDa hep-2B. That each domain represented a single module was confirmed by measurements with four single-module subfragments, all of which melted reversibly, even at neutral pH. At neutral pH in the presence of 6 M-urea, 30 kDa hep-2A melted reversibly in a sharp peak from which only two transitions could be resolved by deconvolution. Only the larger of these was stabilized by heparin and was assigned to modules III13 and III14. Upon isolation, module III13 melted at lower temperature than in the parent fragment where it is stabilized through an interaction with module III14. We conclude that all type III modules in the hep-2 region of fibronectin constitute independently folded domains. Modules III13 and III14 form a highly co-operative structure through functionally significant interactions that can be disrupted with acid or sufficient concentrations of urea or guanidinium chloride.  相似文献   

13.
Alterations in the membrane organization caused by fibrinogen binding to human blood platelets and their isolated membranes were analyzed by fluorescence and electron spin resonance measurements. The degree of fluorescent anisotropy of DPH, ANS and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Both fluorescence and ESR analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase of the membrane lipid rigidity. This effect seems to be indirect in nature and is mediated by altered membrane protein interactions. As it has been shown that an increased membrane lipid rigidity leads to a greater exposure of membrane proteins, including fibrinogen receptors, this might facilitate a formation of molecular linkages between neighboring platelets. On the other hand, changes of fluorescence anisotropy of membrane tryptophans and N-(3-pyrene) maleimide suggest the augmented mobility of the membrane proteins. Evidence is presented which indicated that the binding of fibrinogen to the membrane receptors is not accompanied by any changes in the fluorescence intensity of ANS attached to the membranes. It may suggest that the covering of platelets with fibrinogen does not influence the surface membrane charge. In contrast to fibrinogen, calcium ions caused an increase of the fluorescence intensity resulting from the more efficient binding of ANS to the platelet membranes.  相似文献   

14.
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pK(a) values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan.  相似文献   

15.
The effect of nitronium ion on nitration, carbonylation and coagulation of human fibrinogen (Fg) in vitro was investigated. We observed that nitration of tyrosine, induced by NO2BF4 (0.01 mmol/l), was increased. No changes in carbonylation by NO2BF4 (0.01 mmol/l) were noticed. Mentioned alterations were associated with amplified coagulation of Fg. Higher concentrations of NO2BF4 (1 and 0.1 mmol/l) triggered growth of nitration and carbonylation of Fg, but led to inhibition of polymerization. Slight nitration may be responsible for increase, whereas sizable nitration and oxidation may lead to inhibition of Fg coagulation.  相似文献   

16.
The binding of low-molecular-weight heparin to an amino-terminal-truncated, 132-amino-acid, human acidic fibroblast growth factor form has been studied by isothermal titration calorimetry. This technique yields values for the enthalpy change and equilibrium constant, from which the Gibbs energy and entropy change are also calculated. Experiments in different buffers and pH values show that the protonic balance during the reaction is negligible. Experiments made at pH 7.0 with NaCl concentrations ranging from 0.20 to 0.60 M revealed changes in enthalpy and Gibbs energy in the range of -30- -17 and -27- -24 kJ x mol(-1), respectively. Isothermal titration calorimetry was also performed at different temperatures to obtain a value for the heat-capacity change at pH 7.0 and 0.4 M NaCl concentration of -96 J K- x mol(-1). A change in the length of heparin brought about no change in the thermodynamic parameters at 25 degrees C under the same experimental conditions. Changes upon ligand binding in the range of -50- -200 A2 in both polar and non-polar solvent-accessible surface areas were calculated from thermodynamic data by using different parametric equations taken from the literature. These values suggest a negligible overall conformational change in the protein when it binds to heparin and no formation of any protein-protein interface.  相似文献   

17.
The binding of LMWH-tyr-FITC to granulocytes, monocytes, and lymphocytes was analyzed by flow cytometry using a low-molecular-weight heparin (LMWH) labeled with fluorescein-5-isothiocyanate (FITC). FITC was covalently bound to tyramine, which was synthesized to LMWH by endpoint-attachment (Malsch et al.: Anal Biochem 217:255-264, 1994). The binding was rapid, specific, dose-dependent, saturable, and reversible. To investigate the molecular weight dependence of heparins, heparin-derived di- to dodecasaccharides were used. With decreasing molecular weight, the amount of oligosaccharides increased; these were bound to granulocytes, monocytes, and lymphocytes (r = -0.77). The degree of sulfation of non-heparin glycosaminoglycans influenced the binding to leukocytes. Decreasing the degree of sulfation decreased the binding. The pentasaccharide did not bind as strongly as the other heparin-derived oligosaccharides, indicating an AT III-independent mechanism. Two classes of heparin binding sites were identified on granulocytes and one class of binding sites on monocytes and lymphocytes. The lowest amount of LMWH-tyr-FITC detected was 1 ng on granulocytes, 0.18 ng on monocytes and 0.01 ng on lymphocytes. The data suggest that heparin and other sulfated polysaccharides may play a role in the physiology of thrombosis, arteriosclerosis, and inflammation by binding to granulocytes, monocytes, and lymphocytes.  相似文献   

18.
We investigated the effects of ions and temperature on the binding of E. coli to heparin using a chemiluminescence electrophoretic mobility shift assay. We found that magnesium ion is an effective inhibitor of the binding. The method can be readily applied to discover agents that can block the binding.  相似文献   

19.
Zinc binding to fibrinogen and fibrin was studied by two techniques. Scatchard analysis of ultrafiltration eluates reveals that fibrinogen has multiple Zn(II)-binding sites, KD (fibrinogen) = 18 microM; n = 6. The zinc content of the "collapsed" fibrin gel supernatant was also determined by atomic absorption spectroscopy and analyzed by a Scatchard plot (KD (fibrin) = 8 microM, n = 6). In other experiments, Zn(II) did not displace 45Ca(II) from fibrin. It appears that the binding of zinc to fibrinogen or fibrin is distinct from that of calcium, and that the zinc-binding characteristics of fibrinogen and fibrin are not significantly affected by the transformation of one into the other.  相似文献   

20.
Thrombospondin (TSP) is a trimeric glycoprotein of Mr 420,000. It was originally described as a major component of human platelet alpha granules and is essential for the secondary phase of platelet aggregation. TSP is also synthesized and secreted by a variety of nucleated cells where it functions in processes involving growth and adhesion of cells to the extracellular matrix. Many of these processes are heparin-inhibitable and are mediated by a proteolytic fragment of TSP called the heparin binding domain (HBD). In order to facilitate the analysis of the structure and function(s) of this domain, we have expressed this molecule in Escherichia coli. A fragment of a TSP cDNA that encodes the heparin binding domain was inserted into the prokaryotic expression vector pJBL6. In bacterial cells grown at 42 degrees C, this vector directs the synthesis of a 24,000-Da polypeptide. Milligram quantities of this protein were purified to homogeneity from E. coli lysates. The structure of the recombinant HBD was confirmed by protein sequencing. The protein was further characterized by analysis of its conformation and function. The recombinant HBD binds [3H]heparin with a Kd of 71 nM, almost identical to that of TSP-derived HBD (80 nM). Additionally, the recombinant HBD is able to compete for TSP binding to 11B carcinoma cells. These studies indicate that the recombinant HBD is synthesized and purified in a native configuration and is functionally equivalent to thrombospondin-derived HBD. They further indicate that glycosylation of the thrombospondin HBD is not necessary for its interaction with heparin and that sequences essential to this interaction reside within the first 229 amino acids of secreted thrombospondin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号