首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Lages  S S Stivala 《Biopolymers》1973,12(1):127-143
The binding of copper(II) ions by heparin was investigated using equilibrium dialysi techniques, and the effects of this binding on solution properties determined. In neus tral Tris buffer solutions, heparin binds a maximum of twenty-three to twenty-four copper ions in two classes of sites, one containing three to four binding sites, the other containing twenty to twenty-one sites. Cooperative binding is associated with the larger class of sites. In more acidic citrate buffer solution, only one class of sites is observed, containing about four to five binding sites. Association constants are calculated for the classes and the possible chemical nature of the sites is discussed. The binding of calcium ions in neutral buffer is also examined, and these ions appear to be bound by a group of twenty to twenty-one binding sites, with a larger association constant than that for the copper ions. Definite effects on the solution properties of heparin, such as intrinsic viscosity, sedimentation coefficients, and partial specific volume, can be observed only in the cooperative binding of copper ions in neutral buffer. The interpretation of these solution properties in terms of molecular size and shape is analyzed, and it is concluded that the metal ion interactions cause no major change in the apparently random coil conformation of heparin in buffered solution, although some minor changes can be associated with the cooperative uptake of copper ions.  相似文献   

2.
Binding of high-Mr kininogen and factor XII/factor XIIa to phospholipids coated on to polystyrene microtiter plates was investigated by ELISA. Both high-Mr kininogen and factor XII/factor XIIa bound specifically to the phospholipid surface. Binding was observed to negatively charged phospholipids only. The binding of high-Mr kininogen was not affected by the presence of zinc ions. At a surface concentration of 20% phosphatidylinositol phosphate in phosphatidylcholine a dissociation constant (kD) of 10 nM for the binding of high-Mr kininogen was calculated. The amount of bound purified alpha-factor XIIa could be increased 4-5-fold in the presence of zinc ions. The lowest zinc ion concentration giving maximal binding was 0.1 mM. The binding of alpha-factor XIIa was inhibited by high-Mr kininogen. Independent of the presence of zinc ions or high-Mr kininogen, a kD of 7.9 nM was calculated for alpha-factor XIIa binding. The binding of prekallikrein was dependent upon the presence and the concentration of high-Mr kininogen. In plasma containing aprotinin, the binding of high-Mr kininogen was apparently inhibited in the presence of zinc ions, which was a prerequisite for the binding of factor XII. This apparently inhibitory effect of zinc ions on the binding of high-Mr kininogen was probably due to the increased binding of factor XII, which displaced high-Mr kininogen.  相似文献   

3.
G Voordouw  R S Roche 《Biochemistry》1975,14(21):4667-4673
The functional properties of the four calcium ions, bound by thermolysin, appear to be very similar to those of the single calcium ion bound by thermomycolase (G. Voordouw and R.S. Roche (1975), Biochemistry, preceding paper in this issue). Hence when the free calcium ion concentration is varied in the range where the calcium double-site dissociates (G. Voordouw and R.S. Roche (1974), Biochemistry 13, 5017), no changes are observed in the sedimentation coefficient or the peptide circular dichroism. Differences in molar ellipticity and molar extinction coefficient occur in the aromatic ultraviolet region, which parallel the occupancy of the calcium binding double site. The difference spectrum, characterized by a main band at 290 nm and a somewhat smaller band at 283 nm, is interpreted as due to the transfer of a partially buried tryptophan residue to the aqueous solvent upon dissociation of the two calcium ions from the double site. This is most likely Trp-186, which is in between Asp-185 and Glu-187, two chelating amino acids of this site. From the calcium dependence of the rate constant for autolytic degradation we conclude, as for thermomycolase, that only conformers devoid of bound calcium ion serve as substrates in the reaction. This rate constant increases about 1000-fold, when the double site dissociates. Hydrogen-tritium exchange studies show the presence of a large stable strcutural core, comprising about 32% of all the peptide hydrogens present. These do not exchange-in after 24 hr at 25degreesC, pH 9.0, ionic strenth 0.1. The exchange-out of 60 slow hydrogens was found to be independent of the free calcium ion concentration in the range 2.0-8.0 X 10(-4) M, where all four calcium-binding sites are saturated. The calcium dependence of the first-order rate constant for thermal denaturation at 80degreesC, pH 7.0, indicates that thermolysin is stabilized by only one calcium ion under these conditions. These observations are rationalized in terms of a calcium-binding model for thermolysin and the known three-dimensional structure of the enzyme and its calcium-binding sites.  相似文献   

4.
We have reported a rapid method for the quantitation of proteins secreted in culture media ([12.]). Using the same method, we observe that serum-free rat hepatocyte cultures exhibited a 100% increase in detectable secreted fibrinogen-antigen in the presence of 1 unit/ml heparin or greater at 24 h of culture. The amount of transferrin, haptoglobin, and albumin detected was unaltered by the presence of heparin. Since heparin is known to affect certain cellular functions, the fates of [35S]methonine-labeled fibrinogen in cell extracts and culture media were examined employing pulse-chase experiments. Labeled intracellular fibrinogen disappeared at similar rates and was initially released into the media in similar amounts in the presence or absence of heparin. At 8 h during the chase, there was a 40–50% reduction in fibrinogen-antigen in spent culture medium lacking heparin. The presence of heparin did not alter the proteolytic degradation of secreted fibrinogen as determined by immunoblotting of spent culture media proteins separated by polyacrylamide gel electrophoresis. In vitro experiments indicate that clotting of fibrinogen by thrombin reduces the amount of immunodetectable fibrinogen. The results indicate that heparin increases the amount of detectable fibrinogen secreted by cultured hepatocytes by preventing clotting and not by stimulating synthesis or secretion or by inhibiting degradation. Hence, it is critically important to include heparin when secreted fibrinogen is quantitated by the method that we have developed.  相似文献   

5.
An investigation was made of the role of calcium ions in the reversible stage of fibrin polymerization, using a direct and relatively simple approach. Purified fibrin monomer in solution (7.5 mg/ml) in 1.0 m NaBr (pH 5.3) was polymerized by raising the pH to 5.7–7.7 by the addition of aliquots of standard NaOH solution and the rate and total extent of proton release during polymerization were measured potentiometrically. In the presence of added CaCl2 (10−5-10−2m) the rate of proton release was increased and the clotting time was decreased. The profile of equilibrium proton release vs pH of polymerization was also shifted, the maximum being increased and occurring at a lower pH. Sedimentation velocity studies in the intermediate pH range (5.7–6.0) showed that the altered profile of equilibrium proton release was due to a broadening of the pH range of polymerization, and that polymerization remained reversible in the presence of CaCl2. At pH 5.3, where fibrin is essentially monomeric, addition of CaCl2 resulted in the release of protons and small increases in sedimentation coefficient and reduced viscosity. Under the same conditions, a similar release of protons was observed from fibrinogen, but there was no effect on its sedimentation coefficient. It was concluded that the proton release at pH 5.3 was due mainly to binding of calcium ions to fibrinogen and fibrin monomer. The effect of CaCl2 on the sedimentation coefficient of fibrin at pH 5.3 was found to decrease with decreasing protein concentration, indicating that it was the result of a small extent of polymerization, rather than a conformational change. Added MgCl2 had no effect on fibrin monomer at pH 5.3 and no significant effect on the rate or extent of proton release during polymerization at higher pH, indicating that there are specific binding sites for calcium ions in fibrinogen and fibrin. The observed effects of bound calcium ions on reversible fibrin polymerization are explained most simply in electrostatic terms.  相似文献   

6.
Heparin dramatically enhanced the rate of unbound glucocorticoid receptor inactivation in vitro in a concentration, time and temperature-dependent manner. Control specific binding decreased only about 25% after incubation for 6 h at 4°C. However in the presence of heparin (40 μg per ml cytosol) receptor binding decreased about 75%. At 25°C liver receptor specific binding was found to have a half0life of about 60 min in control cytosol. However, in the presence of heparin (40 μg per ml cytosol) the glucocorticoid receptor had a half-life of only 15 min at 25°C. Interestingly, 10 mM molybdate (with or without 5 mM dithiothreitol) greatly inhibited heparin-dependent receptor inactivation at 4°C. Dithiothreitol (alone) significantly stabilized receptor binding in control samples at 4°C, but provided no protection from heparin-dependent receptor inactivation. Heparin had no apparent inactivating effect on prebound glucocorticoid receptor complexes at 4°C. Interestingly however, heparin altered the sedimentation coefficient of prebound hepatic glucococorticoid-receptor complexes in low salt gradients from 7–8 S to about 3–4 S. When molybdate plus dithiothreitol were added with heparin, the sedimentation coefficient was found to be approx. 6—7 S. These results demonstrate that heparin, which is often used pharmacologically and which occurs naturally in animal tissues, has significant effects on liver glucocorticoid receptors in vitro.  相似文献   

7.
G Rivas  J A Fernandez  A P Minton 《Biochemistry》1999,38(29):9379-9388
The technique of tracer sedimentation equilibrium [Rivas, G., et al. (1994) Biochemistry, 2341-2348 (1); Rivas, G., et al. (1996) J. Mol. Recognit. 9, 31-38 (2)] is utilized, together with an extension of the theory of sedimentation equilibrium of highly nonideal solutions [Chatelier and Minton, (1987) Biopolymers 26, 1097-1113 (3)], to characterize the thermodynamic activity and/or the state of association of a dilute, labeled macromolecular solute in the presence of an arbitary concentration of a second, unlabeled macromolecular solute. Experiments are performed on solutions of labeled fibrinogen (0.25-1 g/L) in bovine serum albumin (0-100 g/L) in the presence and absence of divalent cations (Ca(2+), Mg(2+)), and on solutions of labeled tubulin (0.2-0.6 g/L) in dextran (0-100 g/L). It is found that in the absence of the divalent cations, the large dependence of the thermodynamic activity of fibrinogen on BSA concentration is well accounted for by a simple model for steric repulsion. In the presence of the cations and sufficiently large concentrations of BSA (>30 g/L), fibrinogen appears to self-associate to a weight-average molar mass approximately twice that of monomeric fibrinogen. Tubulin appears to self-associate to an extent that increases monotonically with increasing dextran concentration, reaching a weight-average molar mass almost 3 times that of the alphabeta dimer in the presence of 100 g/L dextran. Possible biological ramifications are discussed.  相似文献   

8.
The oxidative mechanism whereby heparin may interact with various proteins was investigated in detail in this work by addressing the role of doses of heparin on the nature and effects of its binding to bovine trypsin, taken as reference protein. Unfractionated heparin was used at concentrations ranging from 6 to 400 microg/ml with a fixed trypsin concentration (250 microg/ml). At concentrations of up to 60 microg/ml, equivalent to trypsin/heparin molar ratios of between 30 and 3, increasing inhibition of amidolytic activity and radical-dependent peptide bond cleavage of the enzyme was observed, with the appearance in the electrophoretic pattern of new bands of trypsin fragments to which heparin was demonstrated to be bound specifically. Structural modifications were also revealed by increases in fluorescence emission spectra. On the whole, however, the alterations induced by these heparin concentrations only involved a limited number of trypsin molecules. At concentrations from 120 to 400 microg/ml (equivalent trypsin/heparin molar ratios of 1.5-0.46), heparin binding to trypsin appeared to cause more profound and generalized alterations of enzyme structure and function, with dose-dependent quenching of fluorescence emission and almost complete loss of amidolytic activity, although evidence of radical production was lacking. Collectively, the results stress the crucial role of heparin dose on both the nature and effects of its binding to trypsin. The change in heparin effects which reflects distinct underlying molecular mechanisms occurs dramatically at a critical concentration threshold. While a specific, radical-generating mechanism operates at low concentrations, less specific ionic linkages, apparently independent of radical production, best explain the effects of high heparin concentrations.  相似文献   

9.
Inactivation of plasmin by a 3-4-fold molar excess of antithrombin III follows pseudo-first-order kinetics and the apparent rate constants are proportional to the concentration of the inhibitor. Heparin accelerates the inactivation reaction without changing its pseudo-first-order character, and the apparent rate constants are also proportional to the concentration of the polysaccharide. Heparin results in a minimum 20-fold rate enhancement of the reaction between plasmin and antithrombin III when the concentrations of heparin and plasmin are approx. 0.5mum and 1mum respectively. Heparin at a molar concentration well below that of plasmin still accelerates the reaction: one molecule of the polysaccharide is able to facilitate the inactivation of about 100 molecules of plasmin. Heparin must bind to plasmin to accelerate the plasmin-antithrombin III reaction, since the modification of four to five lysine residues of the enzyme inhibits the rate-enhancement effect of heparin and the dissociation of heparin-plasmin complex decreases the inactivation rate of plasmin. Increasing the concentration of antithrombin III, at a constant amount of heparin, results in increase of the inactivation rate. By contrast, the effect of increasing the amount of plasmin in the presence of constant amount of heparin and antithrombin III is such that higher plasmin-to-heparin ratios are associated with lower rates of inactivation. It seems, therefore, that to obtain ;optimal' conditions for fast enzyme inactivation, the amount of heparin should be matched to plasmin rather than to antithrombin III. Arrhenius plots of the plasmin-antithrombin III reaction are linear both in the absence and presence of heparin, at concentrations of 1 or 2mug/ml, over a range of 26K. Under these experimental conditions, heparin increases activation entropy. The findings show that heparin seems to fulfil some criteria that are characteristic for biological catalysis: binding, reaction-rate enhancement (increasing activation entropy), recycling of heparin (effectiveness of non-stoichiometric amounts of the polysaccharide) and specificity.  相似文献   

10.
An albumin-copper-cysteine complex that has been shown to be formed in serum when cupric ion is injected intravenously into rats was reconstituted in vitro with mercaptalbumin, cupric ion, and cysteine in the presence of calcium ions. Mercaptalbumin was separated from fresh rat serum on a GS-520P column and the protein was incubated with an equimolar amount of cupric ions, which resulted in the formation of an albumin-copper complex. However, the albumin-copper complex did not form the albumin-copper-cysteine complex in the presence of cysteine at any of the molar ratios of cysteine to mercaptalbumin examined. Albumin-copper-cysteine complex was formed only when a more than equimolar amount of calcium to mercaptalbumin was present in the incubation mixture. The stoichiometric relationship revealed for the formation of albumin-copper-cysteine complex is mercaptalbumin: copper:cysteine:calcium = 1:1:2:1. One molar equivalent of cysteine was incorporated into the complex through disulfide bonds and another molar equivalent of cysteine was present unchanged after the reaction, suggesting that the latter cysteine participated in maintaining a specific conformation of albumin during formation of the complex. The overall reaction was oxidative and oxygen enhanced the reaction.  相似文献   

11.
It was found that heparin is capable of increasing the sedimentation coefficient of DNA over alkaline and neutral sucrose density gradients as well as of reducing the intrinsic viscosity of native DNA. Irreversible compactization of DNA induced by heparin apparently by means of intramolecular aggregation of DNA with involvement of residual protein underlies the above-described phenomena. The influence of heparin on DNA is potentiated in more concentrated solutions. This should be taken into account in the assay of DNA-containing systems in the presence of heparin.  相似文献   

12.
Characteristics of the interaction between heparin and calcium ion in the presence of sodium ion have been examined by monitoring the 13C-chemical shift changes as a function of the calcium ion concentration and the total ionic strength. The results indicated that the association between the polyanion and the divalent cation is a delocalized process, as opposed to one involving specific binding. The correspondence found between chemical shift and the number of Ca2+ ions bound per charged group, as derived from the Manning counterion-condensation model, showed that the stoichiometry is not a constant quantity but, rather, varies throughout the titration, and approaches a limiting value of 2 at high dilution. Additional measurements of T1 and line-width were consistent with an intramolecular order-disorder conformational process induced by the binding of calcium ion. Moreover, binding does not occur or is relatively weak with N-desulfated heparin, or chondroitin 4-sulfate and 6-sulfate, each of which possesses fewer sulfate groups than heparin. These differences serve to emphasize the importance of the charge-density parameter in the control of counterion condensation according to the Manning model, and suggest that the spacing between the negatively charged groups is an associated factor.  相似文献   

13.
BACKGROUND: Cell death induced by intracellular glutathione depletion has been reported to be dependent on the presence of trace amounts of extracellular copper ions. Since little is known about the relationship between glutathione depletion and copper homeostasis, we have in the present study further investigated the role of low amounts of copper ions in glutathione depletion. METHODS: Glutathione turnover was investigated in HeLa and hepatoma cell cultures with normal and low cysteine content in the presence of copper ions (1 and 10micromol/L) and two other glutathione-stimulating agents (lipoic acid and mercury ions). RESULTS: Copper ions (10micromol/L) caused relatively small increases in total amount of glutathione (the sum of the intracellular and the extracellular amount of glutathione) in HeLa and hepatoma cell cultures with normal cysteine levels (420nmol/mL) compared to control cell cultures, whereas lipoic acid and mercury ions strongly increased total glutathione in both types of cell cultures. Lower amount of total glutathione was observed in cell cultures with a lower cysteine levels (84nmol/mL), which is similar to that in human plasma. A strongly decreased total amount of glutathione in the presence of copper ions was observed in hepatoma cell cultures with lower cysteine levels, whereas the other agents showed effects similar to those described for cell cultures with normal cysteine levels. CONCLUSION: Glutathione synthesis in hepatoma cell cultures is probably more sensitive to a low cysteine level than HeLa cell cultures, and the presence of copper ions further decreases the availability of cysteine probably by increasing the disulfide binding to cysteine residues in extracellular proteins, which causes a further decrease of total glutathione.  相似文献   

14.
The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn2+ in this interaction because Zn2+ is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn2+ promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn2+-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn2+-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn2+ is present. These results reveal the mechanism by which Zn2+ augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.  相似文献   

15.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

16.
The interaction of calf thymus DNA with Cu2+and Pb2+ was studied in aqueous solution at pH 6.5 with metal/DNA (P) (P = phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform ir (FTIR) spectroscopy. Correlations between the ir spectral changes, metal ion binding mode, DNA condensation, and denaturation, as well as conformational features, were established. Spectroscopic evidence has shown that at low metal/DNA (P) molar rations 1/80 and 1/40, copper and lead ions bind mainly to the PO of the backbone, resulting in increased base-stacking interaction and duplex stability. The major copper ion base binding via G-C base pairs begins at r > 1/40, while the lead ion base binding occurs at r > 1/20 with the A-T base pairs. The denaturation of DNA begins at r = 1/10 and continues up to r = 1/2 in the presence of copper ions, whereas a partial destabilization of the helical structure was observed for the lead ion at high metal ion concentration (r = 1/2). Metal-DNA binding also results in DNA condensation. No major departure from the B-family structure was observed, upon DNA interaction with these metal ions. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.  相似文献   

18.
Soluble fibrin is observed in patients with intravascular coagulation and represents an intermediary product of conversion of fibrin monomers into a fibrin clot whereby the presence of fibrinogen may suppress fibrin clot formation. The interactions between fibrin and fibrinogen and the occurrence of fibrin oligomers in soluble fibrin were studied by sucrose density ultracentrifugation. Different concentrations of soluble fibrin, prepared by mixing 125I-fibrin (24 nM - 1.5 microM) with a constant concentration of 131I-fibrinogen (6 microM) were analyzed at 37 degrees C in stable linear sucrose density gradients containing a uniform concentration of unlabelled fibrinogen (6 microM) and calcium ions in order to mimic the physiological situation. At any fibrin concentration, 125I-fibrin sedimented faster than 131I-fibrinogen through 5-30% (w/v) sucrose gradients. Sedimentation rates of fibrin increased from 9 S to 23 S depending on the initial fibrin concentration. The relative amount of residual fibrin monomer not incorporated into oligomers was calculated from the sedimentation profiles. At any fibrin concentration, the portion of free monomer was always more than twofold higher for batroxobin-generated (desAA-) fibrin than for thrombin-generated (desAABB-) fibrin. Apparent association constants for desAABB-fibrin were 3-10 times higher than those for desAA-fibrin indicating a stronger interaction between monomers of the former type of fibrin. In the presence of excess fibrinogen the predominant species in soluble desAA-fibrin were monomers and dimers, whereas dimers, trimers and higher-molecular-mass oligomers were present in soluble desAABB-fibrin. Strong interactions between both types of fibrin were demonstrated from their cosedimentation, whereby the size of these copolymers were shown to be governed by the oligomer size of the desAABB-fibrin type. These results provide evidence for the occurrence of differently sized oligomers of fibrin in soluble fibrin and for the concept of a cooperative polymerization process between both types of fibrin devoid of any stable complexes between fibrin and fibrinogen.  相似文献   

19.
The ability of metal ions to cause physical aggregation of neutral solutions of bovine fibrinogen has been studied. Three categories were found: (a) ions (such as Ca2+, Mg2+ and Mn2+) which did not cause aggregation even when present in 1–100 mm concentrations: (b) ions (such as Fe2+, Cu2+ and Ni2+) which caused aggregation in the 0–10 mm concentration range, (c) ions (such as Hg2+, Zn2+, Cr3+, La3+) which caused aggregation in the 0–1000 μm concentration range. Aggregation occurs immediately the metal ion is brought into contact with the fibrinogen, and product formation reaches a steady state within 5 min. With the exception of Zn2+, all the ions that caused aggregation exhibited a threshold concentration below which no observable aggregation took place. The threshold concentration for Hg2+, the most effective ion studied, was 6 μm. Addition of excess EDTA caused resolubilization of the aggregated fibrinogen due to removal of the metal ions. Aggregation is thus thought to be a physical process initiated by binding of metal ions to those carboxyl groups in fibrinogen responsible for keeping the monomers apart in solution. The aggregation does not involve prior proteolytic degradation of the fibrinogen.  相似文献   

20.
Data from cell culture and animal models of prion disease support the separate involvement of both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though direct interactions between prion protein and heparin have been recorded, little is known of the structural features implicit in this interaction or of the involvement of copper (II) ions. Using biosensor and enzyme-linked immunosorbent assay methodology we report direct heparin and heparan sulfate-binding activity in recombinant cellular prion protein (PrP(c)). We also demonstrate that the interaction of recombinant PrP(c) with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to competition with dextran sulfate. Competitive inhibition experiments with chemically modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are essential for heparin recognition. We have also identified three regions of the prion protein capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93, and 110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif amino acids 53-93 with heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit the binding of full-length prion molecule to heparin, suggesting a direct role in heparin recognition within the intact protein. The collective data suggest a complex interaction between prion protein and heparin/heparan sulfate and has implications for the cellular and pathological functions of prion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号