首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

2.

Background

The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

Results

We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

Conclusion

Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
  相似文献   

3.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

4.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.

Methods

A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test.

Results

Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum.

Conclusions

Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
  相似文献   

5.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

6.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

7.

Objectives

To enhance acid tolerance of Candida glabrata for pyruvate production by engineering AMP metabolism.

Results

The physiological function of AMP deaminase in AMP metabolism from C. glabrata was investigated by deleting or overexpresseing the corresponding gene, CgAMD1. At pH 4, CgAMD1 overexpression resulted in 59 and 51% increases in biomass and cell viability compared to those of wild type strain, respectively. In addition, the intracellular ATP level of strain Cgamd1Δ/CgAMD1 was down-regulated by 22%, which led to a 94% increase in pyruvate production. Further, various strengths of CgAMD1 expression cassettes were designed, thus resulting in a 59% increase in pyruvate production at pH 4. Strain Cgamd1Δ/CgAMD1 (H) was grown in a 30 l batch bioreactor at pH 4, and pyruvate reached 46.1 g/l.

Conclusion

CgAMD1 overexpression plays an active role in improving acid tolerance and pyruvate fermentation performance of C. glabrata at pH 4.
  相似文献   

8.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

9.

Purpose of Review

The purpose of this review is to contribute to the knowledge about the existence of Candida auris as an emerging pathogenic fungus, multi-resistant to antifungal, and causing health care-associated infections (HCAI).

Recent Findings

C. auris emerges as yeast with clonal transmission resistance to three families of commonly used antifungals, mainly azoles (fluconazole and voriconazole), diminishing therapeutic options for the treatment of fungal infections. In 2009, C. auris was isolated for the first time in Japan and by the time of this review, it has been reported in different countries in Africa, America, Asia, and Europe.

Summary

It is important to identify yeasts of the Candida genus up to species, to perform susceptibility tests and to implement surveillance, prevention, and control measures, to minimize the global spread of this fungus, due to its impact on public health.
  相似文献   

10.
11.
12.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

13.
14.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

15.

Background

Leishmaniasis and malaria are the two most common parasitic diseases and responsible for large number of deaths per year particularly in developing countries like Pakistan. Majority of Pakistan population rely on medicinal plants due to their low socio-economic status. The present review was designed to gather utmost fragmented published data on traditionally used medicinal plants against leishmaniasis and malaria in Pakistan and their scientific validation.

Methods

Pub Med, Google Scholar, Web of Science, ISI Web of knowledge and Flora of Pakistan were searched for the collection of data on ethnomedicinal plants. Total 89 articles were reviewed for present study which was mostly published in English. We selected only those articles in which complete information was given regarding traditional uses of medicinal plants in Pakistan.

Results

Total of 56 plants (malaria 33, leishmaniasis 23) was found to be used traditionally against reported parasites. Leaves were the most focused plant part both in traditional use and in in vitro screening against both parasites. Most extensively used plant families against Leishmaniasis and Malaria were Lamiaceae and Asteraceae respectively. Out of 56 documented plants only 15 plants (Plasmodia 4, Leishmania 11) were assessed in vitro against these parasites. Mostly crude and ethanolic plant extracts were checked against Leishmania and Plasmodia respectively and showed good inhibition zone. Four pure compounds like artemisinin, physalins and sitosterol extracted from different plants proved their efficacy against these parasites.

Conclusions

Present review provides the efficacy and reliability of ethnomedicinal practices and also invites the attention of chemists, pharmacologist and pharmacist to scientifically validate unexplored plants that could lead toward the development of novel anti-malarial and anti-leishmanial drugs.
  相似文献   

16.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

17.

Introduction

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disease with skeletal fragility and variable extra-skeletal manifestations. To date several point mutations in 18 different genes causing different types of OI have been identified. Mutations in WNT1 compromise activity of the osteoblasts leading to disturbed bone mass accrual, fragility fractures and progressive skeletal abnormalities. The present study was conducted to determine the underlying genetic cause of an autosomal recessive skeletal dysplasia in a large consanguineous family from Chinute, Pakistan.

Materials and methods

Blood was collected from 24 individuals of affected family along with clinical data. Homozygosity mapping was performed to confirm consanguinity. SNPs were identified, followed by whole exome and Sanger sequencing. In silico characterization of WNT1 mutation was performed using multiple platforms.

Results

Nine affected family members exhibited severe bone deformities, recurrent fractures, short stature and low bone mineral density. SNP array data revealed homozygous segments >?1 Mb in length accounting for 2.1–12.7% of the genome in affected individuals and their siblings and a single 6,344,821 bp homozygous region in all affected individuals on chromosome 12q12-q13. This region includes two potential OI candidate genes WNT1 and VDR. We did whole-exome sequencing for both genes in two patients and identified a novel damaging missense mutation in exon 4 of WNT1: c.1168G?>?T (NM_005430) resulting in p.G324C. Sanger sequencing confirmed segregation of mutation with the disease in family.

Conclusion

We report a novel mutation responsible for OI and our investigation expands the spectrum of disease-causing WNT1 mutations and the resulting OI phenotypes.
  相似文献   

18.

Objectives

To engineer the yeast Saccharomyces cerevisiae for the heterologous production of linalool.

Results

Expression of linalool synthase gene from Lavandula angustifolia enabled heterologous production of linalool in S. cerevisiae. Downregulation of ERG9 gene, that encodes squalene synthase, by replacing its native promoter with the repressible MET3 promoter in the presence of methionine resulted in accumulation of 78 µg linalool l?1 in the culture medium. This was more than twice that produced by the control strain. The highest linalool titer was obtained by combined repression of ERG9 and overexpression of tHMG1. The yeast strain harboring both modifications produced 95 μg linalool l?1.

Conclusions

Although overexpression of tHMG1 and downregulation of ERG9 enhanced linalool titers threefold in the engineered yeast strain, alleviating linalool toxicity is necessary for further improvement of linalool biosynthesis in yeast.
  相似文献   

19.

Background

Streptococcus gordonii is an infrequent cause of infective endocarditis (IE); associated spondylodiskitis has not yet been described in the literature.

Purpose

We describe 2 patients who presented with new-onset, severe back pain; blood cultures revealed S. gordonii bacteremia, which led to the diagnosis of spondylodiskitis and IE. We review our 2-decade experience with S. gordonii bacteremia to describe the clinical and epidemiological characteristics of these patients.

Results

In our hospital over the last 20 years (1998–2017), a total of 15 patients with S. gordonii bacteremia were diagnosed, including 11 men and 4 women, and the mean age was 65 ± 22 (range 23–95). The most common diagnosis was IE (9 patients), spondylodiskitis (the presented 2 patients, who in addition were diagnosed with endocarditis), necrotizing fasciitis (1), sternitis (1), septic arthritis (1) and pneumonia (1). The 11 patients with IE were treated with penicillin ± gentamicin, or ceftriaxone for 6 weeks, 5 required valve surgery and 10/11 (91%) attained complete cure. The 2 patients with diskitis required 2–3 months of intravenous antibiotics to achieve complete cure.

Conclusion

Spondylodiskitis was the presenting symptom of 2/11 (18%) patients with S. gordonii endocarditis. Spondylodiskitis should probably be looked for in patients diagnosed with S. gordonii endocarditis and back pain as duration of antibiotic treatment to achieve complete cure may be considerably longer.
  相似文献   

20.

Objectives

To find a novel host for the production of 4-vinylphenol (4VPh) by screening Streptomyces species.

Results

The conversion of p-coumaric acid (pHCA) to 4VPh in Streptomyces mobaraense was evaluated using a medium containing pHCA. S. mobaraense readily assimilated pHCA after 24 h of cultivation to produce 4VPh. A phenolic acid decarboxylase, derived from S. mobaraense (SmPAD), was purified following heterologous expression in Escherichia coli. SmPAD was evaluated under various conditions, and the enzyme’s kcat/Km value was 0.54 mM ?1 s?1. Using intergenetic conjugation, a gene from Rhodobacter sphaeroides encoding a tyrosine ammonia lyase, which catalyzes the conversion of l-tyrosine to p-coumaric acid, was introduced into S. mobaraense. The resulting S. mobaraense transformant produced 273 mg 4VPh l?1 from 10 g glucose l?1.

Conclusion

A novel strain suitable for the production of 4VPh and potentially other aromatic compounds was isolated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号