首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We recently discovered that hyaluronan was exported from fibroblasts by MRP5 and from epithelial cells by cystic fibrosis (CF) transmembrane conductance regulator (CFTR) that was known as a chloride channel. On this basis we developed membrane permeable analogs of hyaluronan disaccharide as new class of compounds to modify their efflux. We found substances that activated hyaluronan export from human breast cancer cells. The most active compound 2-(2-acetamido-3,5-dihydroxyphenoxy)-5-aminobenzoic acid (Hylout4) was tested for its influence on the activity of epithelial cells. It activated the ion efflux by normal and defective ΔF508-CFTR. It also enhanced the plasma membrane concentration of the ΔF508-CFTR protein and reduced the transepithelial resistance of epithelial cells. In human trials of healthy persons, it caused an opening of CFTR in the nasal epithelium. Thus compound Hylout4 is a corrector that recovered ΔF508-CFTR from intracellular degradation and activated its export function.  相似文献   

4.
Nucleotide-dependent gating of ΔF508-CFTR was evaluated in membrane patches excised from HEK 293 and mouse L-cells and compared to observations on wt-CFTR channels recorded in the same expression systems. ΔF508-CFTR exhibited PKA activated, ATP-dependent channel gating. When compared to wt-CFTR, the K m for ATP was increased by ninefold (260 μm vs. 28 μm) and maximal open probability (P o ) was reduced by 49% (0.21 ± 0.06 vs. 0.41 ± 0.02). Additionally, in the absence of PKA, ΔF508-CFTR inactivated over a 1 to 5 min period whereas wt-CFTR remained active. Time-dependent inactivation could be mimicked in wt-CFTR by the intermittent absence of ATP in the cytosolic solution. The effects of 3-isobutyl-1-methyl xanthine (IBMX), a compound reported to stimulate ΔF508-CFTR, were evaluated on wt- and ΔF508-CFTR channels. At concentrations up to 5 mm, IBMX caused a concentration dependent reduction in the observed single channel amplitude (i) of wt-CFTR (maximal observed reduction 35 ± 3%). However, IBMX failed to significantly alter total patch current because of a concomitant 30% increase in P o . The effects of IBMX on ΔF508-CFTR were similar to effects on wt-CFTR in that i was reduced and P o was increased by similar magnitudes. Additionally, ΔF508-CFTR channel inactivation was dramatically slowed by IBMX. These results suggest that IBMX interacts with the ATP-bound open state of CFTR to introduce a short-lived nonconducting state which prolongs burst duration and reduces apparent single channel amplitude. A secondary effect observed in ΔF508-CFTR, which may result from this interaction, is a prolongation of the activated state. In light of previously proposed linear kinetic models of CFTR gating, these results suggest that IBMX traps CFTR in an ATP-bound state which may preclude inactivation of ΔF508-CFTR. Received: 5 February 1999/Revised: 25 March 1999  相似文献   

5.
6.
7.
Copper catalyzed azide-alkyne cycloaddition (CuAAC) chemistry is reported for the construction of previously unknown 5-(1H-1,2,3-triazol-1-yl)-4,5'-bithiazoles from 2-bromo-1-(thiazol-5-yl)ethanones. These novel triazolobithiazoles are shown to have cystic fibrosis (CF) corrector activity and, compared to the benchmark bithiazole CF corrector corr-4a, improved logP values (4.5 vs 5.96).  相似文献   

8.
CFTR is a cAMP-activated chloride channel responsible for agonist stimulated chloride and fluid transport across epithelial surfaces.1 Mutations in the CFTR gene lead to cystic fibrosis (CF) which affects the function of secretory organs like the intestine, the pancreas, the airways and the sweat glands. Most of the morbidity and mortality in CF has been linked to a decrease in airway function.2 The ΔF508 mutation is the most common CF-related mutation in the Caucasian population and represents 90% of CF alleles. Homozygote carriers of this mutation present with a severe CF phenotype.3 The ΔF508 mutation causes misfolding of the nascent CFTR polypeptide, which leads to inefficient export from the endoplasmic reticulum (ER) and rapid degradation by the proteasome.4  相似文献   

9.
The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o? model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o? parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, "near-silent" ENaC caused an additional increase in amiloride-sensitive I(sc) in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive I(sc) in CFBE41o? cells that stably express wild-type (wt) CFTR. CFBE41o? wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o? wt cells did not stimulate amiloride-sensitive I(sc), suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.  相似文献   

10.
Gee HY  Noh SH  Tang BL  Kim KH  Lee MG 《Cell》2011,146(5):746-760
The most prevalent disease-causing mutation of CFTR is the deletion of Phe508 (ΔF508), which leads to defects in conventional Golgi-mediated exocytosis and cell surface expression. We report that ΔF508-CFTR surface expression can be rescued in vitro and in vivo by directing it to an unconventional GRASP-dependent secretion pathway. An integrated molecular and physiological analysis indicates that mechanisms associated with ER stress induce cell surface trafficking of the ER core-glycosylated wild-type and ΔF508-CFTR via the GRASP-dependent pathway. Phosphorylation of a specific site of GRASP and the PDZ-based interaction between GRASP and CFTR are critical for this unconventional surface trafficking. Remarkably, transgenic expression of GRASP in ΔF508-CFTR mice restores CFTR function and rescues mouse survival without apparent toxicity. These findings provide insight into how unconventional protein secretion is activated, and offer a potential therapeutic strategy for the treatment of cystic fibrosis and perhaps diseases stemming from other misfolded proteins.  相似文献   

11.
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.Cystic fibrosis (CF)1 is a pleiotropic disease caused by an abnormal ion transport in the secretory epithelia lining the tubular organs of the body such as lungs, intestines, pancreas, liver, and male reproductive tract. In the airways of CF patients, reduced Cl and bicarbonate secretion caused by lack of functional Cystic fibrosis transmembrane conductance regulator (CFTR) on the apical surface, and hyper-absorption of Na+ because of elevated activity of ENaC (1), lead to a dehydration of the airway surface liquid (ASL). This reduces the viscosity of the mucus layer and the deposited layer of thickened mucus creates an environment that promotes bacterial colonization, which eventually leads to chronic infection of the lungs and death (2, 3).CFTR is a transmembrane protein that functions as a cAMP-regulated, ATP-dependent Cl channel that also allows passage of bicarbonate through its pore (4, 5). It also possesses ATPase activity important for Cl conductance (6, 7). The CFTR structure is predicted to consist of five domains: two membrane spanning domains (MSD1, MSD2), each composed of six putative transmembrane helices, two nucleotide binding domains (NBD1, NBD2), and a unique regulatory (R) region (8).More than 1900 CFTR mutations have been identified to date (www.genet.sickkids.on.ca/cftr). The most common mutation is a deletion of phenylalanine at position 508 (ΔF508 or ΔF508-CFTR) in NBD1 (9). The ΔF508 mutation causes severe defects in the processing and function of CFTR. The protein exhibits impaired trafficking from the endoplasmic reticulum (ER) to the plasma membrane (PM), impaired intramolecular interactions between NBD1 and the transmembrane domain, and cell surface instability (1015). Nevertheless, the ΔF508 defect can be corrected, because treating cells expressing ΔF508-CFTR with low temperature or chemical chaperones (e.g. glycerol) can restore some surface expression of the mutant (11, 16).Numerous small molecules that can at least partially correct (or potentiate) the ΔF508-CFTR defect have been identified to date (1727), and some were already tested in clinical trials (e.g. sildenafil, VX-809/Lumacaftor), or have made it to the clinic (VX-770/Kalydeco/Ivacaftor) (http://www.cff.org/research/DrugDevelopmentPipeline/). However, the need to identify new ΔF508-CFTR correctors remains immense as the most promising corrector, VX-809, has proven ineffective in alleviating lung disease of CF patients when administered alone (27). Thus, our group developed a high-content technology aimed at identifying proteins and small molecules that correct the trafficking and functional defects of ΔF508-CFTR (28). We successfully used this approach to carry out three separate high-content screens: a protein overexpression screen (28), a small-molecule kinase inhibitor screen (29) and a kinome RNA interference (RNAi) screen, described here.  相似文献   

12.
Correcting the processing of ΔF508-CFTR, the most common mutation in cystic fibrosis, is the major goal in the development of new therapies for this disease. Here, we determined whether ΔF508 could be rescued by a combination of small-molecule correctors, and identified the mechanism by which correctors rescue the trafficking mutant of cystic fibrosis transmembrane conductance regulator (CFTR). We transfected COS-7 cells with ΔF508, created HEK-293 stably expressing ΔF508, and utilized CFBE41o cell lines stably transduced with ΔF508. As shown previously, ΔF508 expressed less protein, was unstable at physiological temperature, and rapidly degraded. When the cells were treated with the combination C18 + C4 the mature C-band was expressed at the cell surface. After treatment with C18 + C4, we saw a lower rate of protein disappearance after translation was stopped with cycloheximide. To understand how this rescue occurs, we evaluated the change in the binding of proteins involved in endoplasmic reticulum-associated degradation, such as Hsp27 (HspB1) and Hsp40 (DnaJ). We saw a dramatic reduction in binding to heat shock proteins 27 and 40 following combined corrector therapy. siRNA experiments confirmed that a reduction in Hsp27 or Hsp40 rescued CFTR in the ΔF508 mutant, but the rescue was not additive or synergistic with C4 + 18 treatment, indicating these correctors shared a common pathway for rescue involving a network of endoplasmic reticulum-associated degradation proteins.  相似文献   

13.
Genetic manipulation is among the most important tools for synthetic biology; however, modifying multiple genes is extremely time-consuming and can sometimes be impossible when dealing with gene families. Here, we present a clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system for use in the diploid yeast Candida tropicalis that is vastly superior to traditional techniques. This system enables the rapid and reliable introduction of multiple genetic deletions or mutations, as well as a stable expression using an integrated CRISPR–Cas9 cassette or a transient CRISPR–Cas9 cassette, together with a short donor DNA. We further show that the system can be used to promote the in vivo assembly of multiple DNA fragments and their stable integration into a target locus (or loci) in C. tropicalis. Based on this system, we present a platform for the biosynthesis of β-carotene and its derivatives. These results enable the practical application of C. tropicalis and the application of the system to other organisms.  相似文献   

14.
《Cytotherapy》2022,24(11):1087-1094
BackgroundNatural killer (NK) cell genome editing promises to enhance the innate and alloreactive anti-tumor potential of NK cell adoptive transfer. DNA transposons are versatile non-viral gene vectors now being adapted to primary NK cells, representing important tools for research and clinical product development.Aims and MethodsWe set out to generate donor-derived, primary chimeric antigen receptor (CAR)-NK cells by combining the TcBuster transposon system with Epstein–Barr virus–transformed lymphoblastoid feeder cell-mediated activation and expansion.ResultsThis approach allowed for clinically relevant NK-cell expansion capability and CAR expression, which was further enhanced by immunomagnetic selection based on binding to the CAR target protein.The resulting CAR-NK cells targeting the myeloid associated antigen CLL-1 efficiently targeted CLL-1–positive AML cell lines and primary AML populations, including a population enriched for leukemia stem cells. Subsequently, concurrent delivery of CRISPR/Cas9 cargo was applied to knockout the NK cell cytokine checkpoint cytokine-inducible SH2-containing protein (CIS, product of the CISH gene), resulting in enhanced cytotoxicity and an altered NK cell phenotype.ConclusionsThis report contributes a promising application of transposon engineering to donor-derived NK cells and emphasizes the importance of feeder mediated NK cell activation and expansion to current protocols.  相似文献   

15.
正Deciphering the biological functions of each gene in the genome is fundamental for understanding the molecular mechanisms underlying normal development, physiology,and behavior, as well as diseases. One common approach to determine gene function is to disrupt individual genes and assess the consequences. Zebrafish (Danio rerio) has been gaining popularity as a model organism to analyze gene function. This is particularly true in China, as the number of  相似文献   

16.
Journal of Industrial Microbiology & Biotechnology - This study details a reliable and efficient method for CRISPR–Cas9 genome engineering in the high amino acid-producing strain of...  相似文献   

17.
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

18.
Newly developed genome-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)–Cas9 system, allow simple and rapid genetic modification in most model organisms and human cell lines. Here, we report the production and analysis of mice carrying the inactivation via deletion of a genomic insulator, a key non-coding regulatory DNA element found 5′ upstream of the mouse tyrosinase (Tyr) gene. Targeting sequences flanking this boundary in mouse fertilized eggs resulted in the efficient deletion or inversion of large intervening DNA fragments delineated by the RNA guides. The resulting genome-edited mice showed a dramatic decrease in Tyr gene expression as inferred from the evident decrease of coat pigmentation, thus supporting the functionality of this boundary sequence in vivo, at the endogenous locus. Several potential off-targets bearing sequence similarity with each of the two RNA guides used were analyzed and found to be largely intact. This study reports how non-coding DNA elements, even if located in repeat-rich genomic sequences, can be efficiently and functionally evaluated in vivo and, furthermore, it illustrates how the regulatory elements described by the ENCODE and EPIGENOME projects, in the mouse and human genomes, can be systematically validated.  相似文献   

19.
Recently, the CRISPR/Cas9 system has been used as a powerful tool for genome editing in many species (Jinek et al., 2012;Cong et al., 2013;Wright et al., 2016;Li et al., 2017;Deng et al., 2018). The CR1SPR/Cas9 system can not only be used as a useful technology to disrupt endogenous genes but also expand numerous other applications, such as precise base editing (Komor et al., 2016;Zong et al., 2017), regulation of gene expression (Gilbert et al., 2013), and gene replacement or insertion (Wang et al., 2017).  相似文献   

20.
Genome editing by clustered regularly interspaced short palindromic sequences (CRISPR)/CRISPR‐associated protein 9 (Cas9) has revolutionized functional gene analysis and genetic improvement. While reporter‐assisted CRISPR/Cas systems can greatly facilitate the selection of genome‐edited plants produced via stable transformation, this approach has not been well established in seed crops. Here, we established the seed fluorescence reporter (SFR)‐assisted CRISPR/Cas9 systems in maize (Zea mays L.), using the red fluorescent DsRED protein expressed in the endosperm (En‐SFR/Cas9), embryos (Em‐SFR/Cas9), or both tissues (Em/En‐SFR/Cas9). All three SFRs showed distinct fluorescent patterns in the seed endosperm and embryo that allowed the selection of seeds carrying the transgene of having segregated the transgene out. We describe several case studies of the implementation of En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐ SFR/Cas9 to identify plants not harboring the genome‐editing cassette but carrying the desired mutations at target genes in single genes or in small‐scale mutant libraries, and report on the successful generation of single‐target mutants and/or mutant libraries with En‐SFR/Cas9, Em‐SFR/Cas9, and Em/En‐SFR/Cas9. SFR‐assisted genome editing may have particular value for application scenarios with a low transformation frequency and may be extended to other important monocot seed crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号