首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fusarium oxysporum f.sp. melonis (FOM) is a plant pathogen affecting melon production worldwide. An environmental friendly disease management strategy is the use of biocontrol agents (BCAs). Towards this direction, two BCA release strategies, seed coating and amendment of the transplant soil plug with the BCA strain Paenibacillus alvei K165 at various ratios, were evaluated against FOM in planta and in vitro. A reduction in Fusarium wilt symptom development was observed in melon plants, after mixing the transplant soil plug with K165 (107 cfu g?1 powder) at a ratio of 10 % (v/v). The monitoring of K165 rhizosphere population in the different treatments revealed a possible existence of a threshold population level that has to be attained before suppression of disease occurs. The data of the present study suggest that K165 plant protective activity against FOM can be possibly attributed to antibiosis and the triggering of Chit1 and Pal1 gene expression.  相似文献   

2.
3.
In the Mediterranean basin, Verticillium Wilt of Olive (VWO) is diffused throughout its range of cultivation, causing severe yield losses and tree mortality. The disease was reported in almost all the Mediterranean and Middle East countries, and in Lebanon it is of increasing significance also on many valuable crops. The disease has already been reported on potato, peach and almond in the Bekaa valley; however, to date no information is available about the incidence of VWO and the inoculum density of Verticillium dahliae microsclerotia in soil of the main agricultural areas of Lebanon. Results from the present investigations demonstrate a high V. dahliae frequency in soils (75.3%), coupled with a mean soil inoculum density of 17.0 MS g?1, clearly indicating a great impact on the production of susceptible hosts in Lebanon, mainly in Bekaa region. Molecular method to assess the microsclerotia inoculum density in soil allowed the detection of a higher frequency of infested soils, as compared with the traditional plating, thus confirming its higher sensitivity. The overall Verticillium wilt prevalence in the inspected olive orchards was 46.2%, and the frequency of V. dahliae‐infected trees was 25.7%. The widespread presence of V. dahliae in all olive growing areas of Lebanon enforces the adoption of measures aimed at reducing the soil inoculum density before any new olive plantation, and the use of strong phytosanitary regulations to improve the certification schemes of propagating material.  相似文献   

4.
Ji X  Lu G  Gai Y  Zheng C  Mu Z 《FEMS microbiology ecology》2008,65(3):565-573
Forty-five bacterial isolates were collected from surface-sterilized leaves of mulberry ( Morus alba L.). By screening their antagonistic activities against Ralstonia solanacearum in vitro , four isolates showed a remarkable inhibitory effect. The evaluation of the antagonistic strains against bacterial wilt of mulberry indicated that the strain Lu144 effectively reduced disease incidence. In the greenhouse, Lu144 displayed effective biological control against bacterial wilt of mulberry when it was applied to sterile or nonsterile soil before the infection by the pathogen. Based on bacteriological properties and 16S rRNA gene sequencing, Lu144 was identified as a strain of Bacillus subtilis . The endophytic population and infection process of Lu144 in mulberry seedlings was explored following recovery of the green fluorescent protein (GFP)-labeled Lu144 and examination of the labeled strain by confocal laser scanning microscopy. Interestingly, the infection of GFP-labeled Lu144 cells into the mulberry seedlings occurred through the cracks formed at the lateral root junctions and the zone of differentiation and elongation, and the cells were able to develop and transfer in mulberry and mainly in the intercellular spaces of different tissues. The population of the GFP-labeled Lu144 inoculant was larger and more stable in leaves than that in roots and stems.  相似文献   

5.
【背景】2013年11月在甘肃省兰州市皋兰县的日光温室秋冬茬甜瓜种植棚发现黄萎症状的甜瓜植株,病株率约为1%。【目的】明确甜瓜黄萎病的病原。【方法】采用组织分离法进行病原菌分离;通过科赫氏法则(Koch’s法则)明确分出病菌的致病性;采用形态学和分子生物学方法对病原菌进行种类鉴定。【结果】分离得到轮枝菌属真菌8株,轮枝菌属真菌的病株分出率达100%;2个代表性菌株GLTG-2和GLTG-5(显微特征相似但菌落形态和生长速率不同),在温度18-24℃及昼/夜光周期为11.5 h/12.5 h的试验条件下,人工接种可引起甜瓜苗矮化、枯萎;接种后40 d,枯死株率分别为70%和40%;BLASTn分析结果显示,菌株GLTG-2的rDNA-ITS序列与Verticillium dahliae菌株MRHf7的序列相似性达99.78%,菌株GLTG-5的rDNA-ITS序列与V.dahliae菌株MRHf7和Vd414的序列相似性达100.00%。【结论】引起甜瓜黄萎病的病原菌被鉴定为大丽轮枝菌(V. dahliae),这是大丽轮枝菌引起甜瓜黄萎病在我国和亚洲地区的首次报道。  相似文献   

6.
Olive (Olea europaea L.) is one of the first domesticated and cultivated tree species and has historical, social and economical relevance. However, its future as a strategic commodity in Mediterranean agriculture is threatened by diverse biotic (traditional and new/emerging pests and diseases) and abiotic (erosion, climate change) menaces. These problems could also be of relevance for new geographical areas where olive cultivation is not traditional but is increasingly spreading (i.e., South America, Australia, etc). One of the major constraints for olive cultivation is Verticillium wilt, a vascular disease caused by the soil-borne fungus Verticillium dahliae Kleb. In this review we describe how Verticillium wilt of olive (VWO) has become a major problem for olive cultivation during the last two decades. Similar to other vascular diseases, VWO is difficult to manage and single control measure are mostly ineffective. Therefore, an integrated disease management strategy that fits modern sustainable agriculture criteria must be implemented. Multidisciplinary research efforts and advances to understand this pathosystem and to develop appropriate control measures are summarized. The main conclusion is that a holistic approach is the best strategy to effectively control VWO, integrating biological, chemical, physical, and cultural approaches.  相似文献   

7.
Verticillium wilt of sainfoin   总被引:1,自引:0,他引:1  
A wilt disease of sainfoin caused by Verticillium Dahliae Kleb. is described, and it is shown that the fungus can penetrate sainfoin seedlings through unwounded roots as well as through ruptures caused by the emergence of lateral rootlets. V. Dahliae was isolated from naturally infected soil only in June, July and August, although another species, V. nigrescens , was obtained throughout the year.
Comparative studies of the longevity of cultures of V. Dahliae, V: albo-atrum and V. nigrescens proved that all are viable for at least 3 years on agar media. On sterilized wheat grains V. Dahliae dies within 8 weeks after inoculation, V. albo-atrum and V. nigrescens within 12 weeks, while the hyaline variants of the first two remain viable for 6 months.
Evidence was obtained that in artificially inoculated soil V. Dahliae persists mainly as microsclerotia. The fungus may also exist in the soil as hyaline mycelium or conidia, but only for a relatively short time.
The incidence of this disease in sainfoin is reduced by an increase in soil-water content, but is unaffected by the application of lime to the soil.  相似文献   

8.
A virulent strain of pigeon pea wilt pathogen was isolated from wilted pigeon pea plants and was identified as Fusarium oxysporum f. sp. udum. Many bacterial cultures showing antagonism to the pathogen were isolated from various ecological niches. When tested under pot and field conditions, development of fusarial wilt symptoms was prevented in pigeon pea seeds treated with one such antagonist, Bacillus brevis. A formulation of B. brevis with vermiculite as a carrier had a shelf life of at least 6 months. Bacillus brevis produced an extracellular antagonistic substance which induced swelling of the pathogen's hyphal tips, and cells were bulbous and swollen with shrunken and granulated cytoplasm. The antagonistic substance also inhibited germination of conidia, and was fungicidal to the vegetative mycelia of the pathogen. Comparison of the properties of our antagonistic substance with that of known antibiotics produced by B. brevis suggests that our antagonistic substance is a novel compound. The observations reported here indicate that this strain of B. brevis may have potential as a biocontrol agent against fusarial wilt in pigeon pea.  相似文献   

9.
10.
The antagonistic potential of 298 rhizobacteria obtained from the rhizosphere and rhizoplane of tomato and eucalyptus plants was assessed for the control of bacterial wilt of eucalyptus caused by Ralstonia solanacearum. Several tests were performed using tomato plants as a screening system to select efficient rhizobacteria. Different methods for antagonist delivery and pathogen inoculation were evaluated: (1) seeds were microbiolized (soaked for 12 h in a suspension of the antagonist propagules) and germinated seedlings had their roots immersed in the pathogen inoculum suspension; (2) seedlings originated from microbiolized seeds were transplanted to soil infested with R. solanacearum and (3) roots of seedlings were immersed in a suspension of propagules of the antagonist and subsequently in a suspension of R. solanacearum. Nine isolates (UFV-11, 32, 40, 56, 62, 101, 170, 229, and 270) were selected as potential antagonists to R. solanacearum as they suppressed bacterial wilt in at least one of the methods assessed. The selected antagonists were evaluated against two isolates of R. solanacearum using in vitro and in vivo (inoculated eucalyptus) tests. Isolates UFV-56 (Bacillus thuringiensis), UFV-62 (Bacillus cereus) and a commercial formulation of several rhizobacteria (Rizolyptus®) suppressed bacterial wilt in eucalyptus protecting the plants during the early stages of development.  相似文献   

11.
In a series of experiments between 1970 and 1973 the application of benomyl or thiophanate methyl to field-grown strawberries, planted on Verticillium-mtested land, gave control of wilt for up to 5 months, the duration of control being related to the amount of fungicide applied in the spring. Treatment of inoculated plants grown on in chloropicrin-fumigated soil was effective for at least two seasons. An autumn-planted multi-factorial experiment in heavily-infested soil showed that, to achieve maximum wilt control, it was advantageous to grow cv. Gorella rather than cv. Cambridge Vigour; to drench the runners at planting rather than to dip them in the fungicide suspension; and to use a high concentration (0–075 % a-i-) and large volume (600 ml per plant) for a supplementary treatment in May rather than a lower concentration (0.025 %) or smaller volume (400 ml). There were small but significant advantages in applying benomyl rather than thiophanate methyl, and in using 0–2% a.i. suspension at planting rather than 0–05%. No advantage was gained by dividing the spring application into two equal doses applied 2 wk apart. Extrapolation from the logarithmic relation between wilt index and total dose of fungicide applied in the spring suggested that I.I g/plant would have given almost complete control until October; such control had been achieved in an earlier experiment in which 1–2 g/plant was applied. Crop yield in the second year was determined by the treatment applied in the first year, but although these treatments had given significantly better control of wilt in Gorella than in Cambridge Vigour, the greater growth and yield potentials of the latter cultivar had an over-riding effect on crop production; Cambridge Vigour yielded more than Gorella under all chemical treatments, but in the absence of treatment Gorella gave a larger crop than Cambridge Vigour. A proposed regime, entailing spring and autumn applications, is aimed at minimizing the colonization of the plant throughout the year, thus reducing the production of new inoculum and, by limiting the quantity of the pathogen in contact with the systemic chemicals, minimizing the probability of selecting fungicide-resistant variants of V. dahliae.  相似文献   

12.
In this survey, Fusarium oxysporum was isolated from roots infected plants and was shown to be pathogenic. Experiment were carried out with seven antagonistic bacteria. Based on biochemical, Physiological and morphological tests, isolates B-120, B-32, B-28 and B-22 were identified as Bacillus subtilis and isolates Pf-100, Pf-10 and CHAO as Pseudomonas fluorescens. In greenhouse studies, only isolate B-120 (Less than benomyl) reduced Fusarium wilt of chickpea in both seed and soil treatments. The application of antagonistic bacteria had no different effects on plant growth factors. Soil treatment of bacteria had a better effects on plant growth than that of bacterial seed treatment. The use of antagonists (B-120, B-28, B-120 and CHAO) in combination had no significant effect on plant growth factors and reduction wilt disease than that each isolate was applied individually.  相似文献   

13.
Aim:  To screen and evaluate the biocontrol potential of Paenibacillus strains against disease complex caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici interactions.
Methods and Results:  Paenibacillus strains were collected from rotten ginseng roots. The strains were tested under in vitro and pots for their inhibitory activities, and biocontrol potential against disease complex caused by M. incognita and F. oxysporum f. sp. lycopersici on tomato. In in vitro experiments, among 40 tested strains of Paenibacillus spp., 11 strains showed antifungal and nematicidal activities against F. oxysporum f. sp. lycopersici and M. incognita, respectively. Paenibacillus polymyxa GBR-462; GBR-508 and P. lentimorbus GBR-158 showed the strongest antifungal and nematicidal activities. These three strains used in pot experiment reduced the symptom development of the disease complex (wilting and plant death), and increased plant growth. The control effects were estimated to be 90–98%, and also reduced root gall formation by 64–88% compared to the untreated control.
Conclusion:  The protective properties of selected Paenibacillus strains make them as potential tool to reduce deleterious impact of disease complex plants.
Significance and Impact of the Study:  The study highlights biocontrol potential of Paenibacillus strains in management of disease complex caused by nematode-fungus interaction.  相似文献   

14.
Paenibacillus alvei is known as a secondary invader during European foulbrood of honeybees. Here, we announce the 6.83-Mb draft genome sequence of P. alvei type strain DSM 29. Putative genes encoding an antimicrobial peptide, a binary toxin, a mosquitocidal toxin, alveolysin, and different polyketides and nonribosomal peptides were identified.  相似文献   

15.
A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F–C–K–S–L–P–L–P–L–S–V–K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).  相似文献   

16.
The important viscosity of the respiratory tract mucus of Cystic fibrosis (CF) patients impairs the mucociliary transport system and allows the growth of numerous micro-organisms. Among them, Pseudomonas aeruginosa and Staphylococcus aureus are known to be responsible for pulmonary infections. We imagined that CF microflora could also harbour micro-organisms naturally equipped to compete with these pathogens. A method was developed to recover these antibiotic-producing strains within 20 CF sputum. Using this approach, we have isolated an unusual Gram-positive bacterium identified as Paenibacillus alvei by Api galleries and 16S rRNA gene sequence analysis. This strain has inhibited the growth of P. aeruginosa, S. aureus and Klebsiella pneumoniae, in co-cultures. A liquid mineral medium named MODT50 was designed and optimised for the production and the recovery of the antimicrobial compounds. The supernatant has inhibited the growth of all Gram-positive strains tested, even Methicillin-resistant S. aureus. One antimicrobial compound with a peptide structure (mainly active against S. aureus, Micrococcus luteus, and Pseudomonas stutzeri) has been purified and characterised by liquid chromatography-mass spectrometry. The new active molecule (m/z 786.6) named depsipeptide l possesses a 15-guanidino-3-hydroxypentadecanoic acid side chain (m/z 298) linked on a cyclic part of four amino acids residues (Ser, two Leu/Ile, Arg). This work reports for the first time the production of such a molecule by a P. alvei strain in a mineral medium. The CF lung microflora might represent a valuable source for the discovery of new antimicrobial-producing strains.  相似文献   

17.
马铃薯黄萎病研究现状   总被引:5,自引:0,他引:5  
马铃薯黄萎病是一种重要的世界性病害之一,为土传兼种传维管束病害,危害大且防治困难。本文将该病害的分布与危害、症状、6种病原的形态学及其生物学特性、发病规律、病原检测技术和病害综合防控措施等方面研究进行了综合概述,可为该病害的相关深入研究提供理论指导。  相似文献   

18.
Fusarium oxysporum f. tulipae produces at least 2000 times more ethylene than all other Fusarium species or formae specialis tested. Ethylene production is oxygen dependent but not correlated with the growth of mycelium. Ethylene prevents the synthesis of the antifungal compound tulipaline (methylene butyro-lactone) in host tissue. These observations support the hypothesis that ethylene may play an important or even essential role in host-parasite relations.  相似文献   

19.
Several bacterial and fungal strains have been evaluated as biocontrol agents (BCAs) against Verticillium dahliae. In these studies, the BCAs were applied as a root drenching inoculum; however, this application method may have an adverse effect on the native, beneficial for the plants, microbial community. In the present study, it was evaluated whether endophytic application by stem injecting a conidial suspension of the non pathogenic Fusarium oxysporum F2 strain, isolated from a V. dahliae suppressive compost amendment, could reduce significantly Verticillium wilt symptom development in eggplants. It was revealed that stem injection of F2 seven days before transplanting the seedlings to soil infested by V. dahliae microsclerotia resulted in reduced disease severity compared to the control treatment. To visualise F2 ramification into the plant vascular system eggplant stems were injected with an EGFP transformed F2 strain. It was shown that F2 colonises effectively the plant vascular tissues over a long period of time as it was assessed by F2 DNA levels. In parallel, qPCR analysis showed that the application of F2 reduced significantly the amount of V. dahliae DNA in the stem tissues compared to the control treatment.  相似文献   

20.

Paenibacillus alvei NP75, a Gram-positive bacterium, produces two different antimicrobial peptides, paenibacillin N and P, which has potent antimicrobial activity against many clinical pathogens. The synthesis pattern of these antimicrobial peptides by P. alvei NP75 was studied extensively. The results were outstanding in a way that the paenibacillin N was synthesized irrespective of the growth of bacteria (non-ribosomal mediated), whereas paenibacillin P production was carried out by ribosomal mediated. In addition to the antimicrobial peptides, P. alvei NP75 also produces an immunogenic extracellular protease to defend itself from its own antimicrobial peptide, paenibacillin P. Furthermore, this immunogenic protease production was impaired by the addition of protease inhibitor, phenylmethylsulfonyl fluoride (PMSF). The sodium dodecyl sulfate (SDS) treated strain (mutant) failed to produce paenibacillin P, whereas the production of neither paenibacillin N nor the protease was affected by the plasmid curing. The plasmid curing studies that divulge the genes responsible for the synthesis of paenibacillin N and protease were found to be genome encoded, and paenibacillin P was plasmid encoded. We are reporting, first of its kind, the co-production of two different antimicrobial peptides from P. alvei NP75 through non-ribosomal and ribosomal pathways that could be used as effective antibiotics.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号