首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Objectives

To identify and characterize a novel antimicrobial peptide, catesbeianin-1.

Results

Catesbeianin-1 is 25 amino acids long and is α-helical, cationic and amphipathic. It had antimicrobial activity against Gram-positive and Gram-negative bacteria. It was resistant against trypsin and pepsin. Catesbeianin-1 exhibited moderate hemolytic activity (approx 8%) at 100 μg/ml, and its HC50 (50% hemolytic concentration) was 300 μg/ml. Its cytotoxicity was approx 10–20% at 100 μg/ml, and its CC50 (50% cytotoxic concentration) was >100 μg/ml. The LD50 of catesbeianin-1 in mice was 80 mg/kg. At 3.1 µg/ml, catesbeianin-1 significantly inhibited the growth of methicillin-resistant Staphylococcus aureus.

Conclusions

A new antimicrobial peptide from the skin of Lithobates catesbeianus (American bullfrog) may represent a template for the development of novel antimicrobial agents.
  相似文献   

2.

Background

Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated.

Methods

The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2–1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA.

Results

The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p < 0.001) enhanced when both agents were applied in combination compared to each agent alone. Similarly, synergistic interactions were observed when AgNPs were combined with amoxicillin, azithromycin, clarithromycin or linezolid in 30–40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested.

Conclusions

A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which have been proven to be ineffective against MRSA. The suggested approach would be useful to face the fast-growing drug-resistance with the slow development of new antimicrobial agents, and to preserve last resort antibiotics such as vancomycin.
  相似文献   

3.

Objective

To breed Aspergillus oryzae strains with high fructosyltransferase (FTase) activity using intraspecific protoplast fusion via genome-shuffling.

Results

A candidate library was developed using UV/LiCl of the conidia of A. oryzae SBB201. By screening for enzyme activity and cell biomass, two mutants (UV-11 and UV-76) were chosen for protoplast fusion and subsequent genome shuffling. After three rounds of genome recombination, a fusion mutant RIII-7 was obtained. Its FTase activity was 180 U g?1, approximately double that of the original strain, and RIII-7 was genetically stable. In fermentation culture, FTase activity of the genome-shuffled strain reached a maximum of 353 U g?1 using substrate-feeding method, and this value was approximately 3.4-times higher than that of the original strain A. oryzae SBB201.

Conclusions

Intraspecific protoplast fusion of A. oryzae significantly enhanced FTase activity and generated a potentially useful strain for industrial production.
  相似文献   

4.

Objective

To protect the enzymes during fed-batch cellulase production by means of partial enzyme recovery at regular intervals.

Results

Extracellular enzymes were partially recovered at the intervals of 1, 2, or 3 days. Mycelia were also removed to avoid contamination. Increases in the total harvested cellulase (24–62%) and β-glucosidase (22–76%) were achieved. In fermentor cultivation when the enzymes were recovered every day with 15% culture broth. The total harvested cellulase and β-glucosidase activity increased by 43 and 58%, respectively, with fungal cell concentration maintained at 3.5–4.5 g l?1.

Conclusion

Enzyme recovery at regular intervals during fed-batch cellulase cultivation could protect the enzyme in the culture broth and enhance the enzyme production when the fungal cell concentration is maintained in a reasonable range.
  相似文献   

5.

Objectives

To improve the expression of soluble IBDV VP2 protein by using different tagged vectors in Escherichia coli.

Results

Fusion tags, Grifin, MBP, SUMO, thioredoxin, γ-crystallin, ArsC and PpiB, enhanced the expression and solubility of VP2 protein. The fusion proteins were purified by Ni–NTA chromatography, MBP-VP2 showed the highest purity about 90 %. After removing the MBP tag, VP2 self-assembled into virus-like particles, ~25 nm diam. Results from AGP suggested the recombinant IBDV VP2 protein identified by reference serum like IBDV.

Conclusion

All the seven tags enhanced the expression and solubility of IBDV VP2 protein. The recombinant protein self-assembly into virus like particles and possess antigenicity as reference IBDV.
  相似文献   

6.

Objective

To examine the effect of SU9516, a cyclin-dependent kinase inhibitor, on the induction of tetraploid blastocyst formation in porcine embryos by parthenogenetic activation.

Results

Karyotype analysis of blastocysts showed that in the SU9516-treatment group 56% were tetraploid, whereas in the cytochalasin B (CB) group 67% were diploid. The level of maturation-promoting factor (MPF) in stimulated embryos treated with 10 µM SU9516 for 4 h was lower than in embryos treated with CB group (103 vs. 131 pg/ml). The mRNA expression levels of Nanog significantly increased in SU9516-treated embryos than CB group.

Conclusion

SU9516 can induce tetraploid blastocyst formation at high efficiency. SU9516 can significantly influence the in vitro developmental competence of porcine parthenogenetically activated embryos by influencing the level of MPF and the gene related apoptosis and pluripotency.
  相似文献   

7.

Objectives

To evaluate the effects of dexamethasone on the aging of mesenchymal stem cells from human gingiva using next-generation sequencing.

Results

Four mRNAs were upregulated and 12 were downregulated when the results of dexamethasone at 24 h were compared with the control at 24 h. Expressions of SIRT1 and IL6 were decreased in dexamethasone at 24 h but expression of EDN1 was increased.

Conclusions

Application of dexamethasone reduced the expression of SIRT1 and IL6 but enhanced the expression of EDN1 of stem cells.
  相似文献   

8.

Objectives

To develop a new one-pot polyphosphate kinase (PPK) system with low cost and high efficiency for ATP regeneration in industrial CTP production.

Results

We developed a new one-pot PPK system by applying a three-enzyme cascade (CMK, NDK and PPK) with an in vitro polyP-based ATP regeneration system. The PPK was selected from twenty sources, and was made solvable by fusion expressing with soluble protein and constructing polycistronic plasmids, or co-expressing with molecular chaperones GroES/EL. Activities of other enzymes were optimized by employing fusion expression, tac-pBAD system, Rosetta host and codon optimization. After 24 h, the concentration of CDP and CTP reached 3.8 ± 0.2 and 6.9 ± 0.3 mM l?1 respectively with a yield of approximately 79%. The molar conversion rate of CTP was 51%, and its yield and conversion rate increased 100% from the traditional system.

Conclusions

A new one-pot ATP regeneration system applying polyphosphate kinase for CTP production was developed.
  相似文献   

9.
10.

Objective

To re-engineer the active site of proteins for non-natural substrates using a position-based prediction method (PBPM).

Results

The approach has been applied to re-engineer the E. coli glutamate dehydrogenase to alter its substrate from glutamate to homoserine for a de novo 1,3-propanediol biosynthetic pathway. After identification of key residues that determine the substrate specificity, residue K92 was selected as a candidate site for mutation. Among the three mutations (K92V, K92C, and K92M) suggested by PBPM, the specific activity of the best mutant (K92 V) was increased from 171 ± 35 to 1328 ± 71 μU mg?1.

Conclusion

The PBPM approach has a high efficiency for re-engineering the substrate specificity of natural enzymes for new substrates.
  相似文献   

11.

Objectives

To use permeabilized cells of the fission yeast, Schizosaccharomyces pombe, that expresses human UDP-glucose 6-dehydrogenase (UGDH, EC 1.1.1.22), for the production of UDP-glucuronic acid from UDP-glucose.

Results

In cell extracts no activity was detected. Therefore, cells were permeabilized with 0.3 % (v/v) Triton X-100. After washing away all low molecular weight metabolites, the permeabilized cells were directly used as whole cell biocatalyst. Substrates were 5 mM UDP-glucose and 10 mM NAD+. Divalent cations were not added to the reaction medium as they promoted UDP-glucose hydrolysis. With this reaction system 5 mM UDP-glucose were converted into 5 mM UDP-glucuronic acid within 3 h.

Conclusions

Recombinant permeabilized cells of S. pombe can be used to synthesize UDP-glucuronic acid with 100 % yield and selectivity.
  相似文献   

12.

Objectives

With the view of designing a single biocatalyst for biorefining, carbazole dioxygenase was cloned from Pseudomonas sp. and expressed in Rhodococcus sp.

Results

The recombinant, IGTS8, degraded both carbazole and dibenzothiophene at 400 mg/l in 24 h. Maximum carbazole degradation was in 1:1 (v/v) hexadecane/aqueous phase. Anthracene, phenanthrene, pyrene, fluoranthene and fluorine were also degraded without affecting the aliphatic component.

Conclusions

Recombinant Rhodococcus sp. IGTS8 can function as a single biocatalyst for removing major contaminants of fossil fuels viz. dibenzothiophene, carbazole and polyaromatic compounds.
  相似文献   

13.

Purpose

To evaluate the efficiency of corneal collagen cross-linking (CXL) in addition to topical voriconazole in cases with mycotic keratitis.

Design

Retrospective case series in a tertiary university hospital.

Participants

CXL was performed on 13 patients with mycotic keratitis who presented poor or no response to topical voriconazole treatment.

Methods

The clinical features, symptoms, treatment results and complications were recorded retrospectively. The corneal infection was graded according to the depth of infection into the stroma (from grade 1 to grade 3). The visual analogue scale was used to calculate the pain score before and 2 days after surgery.

Main Outcome Measures

Grade of the corneal infection.

Results

Mean age of 13 patients (6 female and 7 male) was 42.4 ± 17.7 years (20–74 years). Fungus was demonstrated in culture (eight patients) or cytological examination (five patients). Seven of the 13 patients (54%) were healed with topical voriconazole and CXL adjuvant treatment in 26 ± 10 days (15–40 days). The remaining six patients did not respond to CXL treatment; they initially presented with higher grade ulcers. Pre- and post-operative pain score values were 8 ± 0.8 and 3.5 ± 1, respectively (p < 0.05).

Conclusions

The current study suggests that adjunctive CXL treatment is effective in patients with small and superficial mycotic ulcers. These observations require further research by large randomized clinical trials.
  相似文献   

14.

Objective

To improve the production of welan gum and obtain a carotenoid-free strain while reducing the fermentation and post-treatment costs.

Results

The vitreoscilla globin (vgb) gene combined with the β-galactosidase (lacZ) promoter was inserted into the phytoene synthase (crtB) gene region of the chromosome in Alcaligenes sp. ATCC31555. When the recombinant strain was grown in a 5 l fermentor, welan gum was produced at 24 ± 0.4 g l?1 compared to 21 g ± 0.4 g l?1 in the wild type. Furthermore, the carotenoid-free welan gum produced using Alcaligenes sp. ATCC31555 VHb strain was less expensive with improved properties.

Conclusions

Alcaligenes sp. ATCC31555 VHb strain was a better neutral welan-producing strain with a higher production than the wild-type strain.
  相似文献   

15.

Background

Cecropin A (CeA), a natural cationic antimicrobial peptide, exerts potent antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, making it an attractive candidate substitute for antimicrobials. However, the low production rate and cumbersome, expensive processes required for both its recombinant and chemical synthesis have seriously hindered the exploitation and application of CeA. Here, we utilized a short β-structured self-aggregating protein, ELK16, as a fusion partner of CeA, which allowed the efficient production of high-purity CeA antibacterial peptide with a simple inexpensive process.

Results

In this study, three different approaches to the production of CeA peptide were investigated: an affinity tag (His-tag)-fused protein expression system (AT-HIS system), a cell-free protein expression system (CF system), and a self-assembling peptide (ELK16)-fused protein expression system (SA-ELK16 system). In the AT-HIS and CF systems, the CeA peptide was obtained with purities of 92.1% and 90.4%, respectively, using one or more affinity-chromatographic purification steps. The procedures were tedious and costly, with CeA yields of only 0.41 and 0.93 μg/mg wet cell weight, respectively. Surprisingly, in the SA-ELK16 system, about 6.2 μg/mg wet cell weight of high-purity (approximately 99.8%) CeA peptide was obtained with a simple low-cost process including steps such as centrifugation and acetic acid treatment. An antimicrobial test showed that the high-purity CeA produced in this study had the same antimicrobial activity as synthetic CeA peptide.

Conclusions

In this study, we designed a suitable expression system (SA-ELK16 system) for the production of the antibacterial peptide CeA and compared it with two other protein expression systems. A high yield of high-purity CeA peptide was obtained with the SA-ELK16 system, which greatly reduced the cost and time required for downstream processing. This system may provide a platform for the laboratory scale production of the CeA antibacterial peptide.
  相似文献   

16.

Aims

Visual guidance through echocardiography and fluoroscopy is crucial for a successful transseptal puncture (TSP) in a prespecified region of the fossa ovalis. The novel EchoNavigator system Release II (EchoNav II, Philips Healthcare, Andover, Massachusetts, USA) enables the real-time fusion of fluoroscopic and echocardiographic images. We evaluated this new imaging method in respect to safety and efficacy of TSP during MitraClip implantation and left atrial appendage closure.

Methods

Forty-four patients before (?EchoNav) and 44 patients after (+EchoNav) the introduction of real-time fusion were included in our retrospective, single-centre study. The primary endpoint was the occurrence of adverse events due to TSP. Secondary endpoints were successful puncture at the prespecified region and time until TSP (min).

Results

In both groups TSP was performed successfully in the prespecified region and no adverse events occurred during or due to the accomplishment of TSP. Time until TSP was significantly reduced in the +EchoNav group in comparison with the EchoNav group (18.48 ± 5.62?min vs. 23.20 ± 9.61?min, p = 0.006).

Conclusions

Real-time fusion of echocardiography and fluoroscopy proved to be as safe and successful as standard best practice for TSP. Moreover, efficacy was improved through significant reduction of time until TSP.
  相似文献   

17.

Objectives

To prepare recombinant tPep-(vascular endothelial growth factor) VEGF-B and assess its biological activity.

Results

This new VEGF fusion protein was constructed using a targeting peptide and prepared using E.coli. The tPep-VEGF-B was refolded from inclusion bodies and purified using affinity chromatography. Its bioactivity was determined in vitro using proliferation assay and wounding healing assay, and in vivo in zebrafish. By using the optimized downstream process, recombinant tPep-VEGF-B can be obtained with a purity of >90 % and a yield of 80 mg protein/l culture medium. The refolded protein is highly effective in promoting cell migration in vitro and in enhancing angiogenesis in vivo.

Conclusion

We have constructed a new VEGF fusion protein with potential therapeutic application in treating metabolic diseases.
  相似文献   

18.

Objectives

To develop a more effective dissolved air flotation process for harvesting microalgae biomass, a co-flocculation/air flotation (CAF) system was developed that uses an ejector followed by a helix tube flocculation reactor (HTFR) as a co-flocculation device to harvest Chlorella sp. 64.01.

Results

The optimal size distribution of micro-bubbles and an air release efficiency of 96 % were obtained when the flow ratio of inlet fluid (raw water) to motive fluid (saturated water) of the ejector was 0.14. With a reaction time of 24 s in the HTFR, microalgae cells and micro-bubbles were well flocculated, and these aerated flocs caused a fast rising velocity (96 m/h) and high harvesting efficiency (94 %).

Conclusions

In a CAF process, micro-bubbles can be encapsulated into microalgae flocs, which makes aerated flocs more stable. CAF is an effective approach to harvesting microalgae.
  相似文献   

19.

Background

Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum.

Objectives

The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks.

Methods

Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models.

Results

A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax ? b). Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex) and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally.

Conclusion

This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.
  相似文献   

20.

Objective

To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans.

Results

Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans.

Conclusions

A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller’s dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号