首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.

Objective

To examine the role of miR-124a in LPS-induced septic cardiac insufficiency where underlying mechanism is unclear.

Results

Expression of miR-124a was decreased in myocardium of LPS-induced septic cardiac dysfunction model. miR-124a antagomiR or agomiR were injected via tail vein to induce miR-124a-dysregulated model. miR-124a antagomiR aggravated LPS-induced cardiac dysfunction and apoptosis, while miR-124a agomiR had the opposite effect. Syntaxin-2 (STX2) was indicated as a candidate target gene by bioinformatic software. Further experiments confirmed that STX2 was downregulated in miR-124a agomiR-treated rats but upregulated in miR-124a antagomiR-treated rats, and STX2 inhibition could strongly block the miR-124a antagomiR-associated increase in cell apoptosis. Luciferase reporter activity assay indicated that STX2 was a direct target of miR-124a. Serological detection reveled that miR-124a was down-regulated in the plasma of septic cardiac dysfunction rats.

Conclusions

miR-124a aggravates LPS-induced cardiac dysfunction and the miR-124a/STX2 pathway might serve as the potential diagnostic and therapeutic targets for septic cardiac dysfunction.
  相似文献   

2.
3.
4.
5.
6.

Objectives

To study the roles and mechanisms of HuR in cancer stem cell maintenance of lung cancer.

Results

HuR expression was increased in tumor spheres of lung cancer cells. Knockdown of HuR suppressed spheroid formation and size, inhibited the expression of stemness-related marker, Oct4, Nanog and ALDH in lung cancer cells. Importantly, HuR and CDK3 expressions were increased in lung cancer tissues compared with normal adjacent tissues, and positively correlated. Mechanistically, HuR directly bound to CDK3, and increased CDK3 mRNA stability and expression. Additionally, miR-873 or miR-125a-3p attenuated the promotion of HuR on CDK3 expression and lung cancer stemness. Furthermore, HuR facilitated lung cancer stemness dependent on CDK3 expression. miR-873 or miR-125a-3p level was negatively correlated with HuR and CDK3 expression levels in lung cancer tissues.

Conclusions

HuR facilitates lung cancer stemness via regulating miR-873/CDK3 and miR-125a-3p/CDK3 axis.
  相似文献   

7.
8.

Background

Pulmonary inflammation and endothelial barrier permeability increase in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) induced by pro-inflammatory cytokines and matrix metalloproteinases (MMPs). However, the relationship between pro-inflammatory cytokines and MMPs in ALI/ARDS remains poorly understood.

Methods

A lipopolysaccharide (LPS)-induced ALI rat model was established through intratracheal instillation. The wet/dry ratios of lung tissues were measured, and bronchoalveolar lavage fluid (BALF) was collected to test protein concentrations, total cell/macrophage numbers, and pro-inflammatory cytokine levels. LPS-treated alveolar macrophages were utilized in in vitro experiments. The expression and secretion of MMPs were respectively detected using quantitative PCR, Western blotting and ELISA assays.

Results

The levels of IL-33 and MMP2/9 in BALF increased in all the ALI rats with severe lung injury. LPS-induced IL-33 autocrine upregulated the expression of MMP2 and MMP9 through activating STAT3. Neutralizing IL-33 in culture medium with specific antibodies suppressed the expression and secretion of MMP2 and MMP9 in LPS-treated alveolar macrophages. Consistently, eliminating IL-33 decreased the levels of MMP2 and MMP9 in BALF and alleviated lung injury in ALI rats.

Conclusion

The IL-33/STAT3/MMP2/9 regulatory pathway is activated in alveolar macrophages during acute lung injury, which may exacerbate the pulmonary inflammation.
  相似文献   

9.

Objective

To investigate the roles of miR-145 in lung adenocarcinoma (LAC) and to clarify the regulation of N-cadherin by miR-145.

Results

In 57 paired clinical LAC tissues, diminished miR-145 was significantly correlated with the lymph node metastasis and was negatively correlated with N-cadherin mRNA level expression. Wound healing and transwell assays revealed a reduced capability of tumor metastasis induced by miR-145 in LAC. miR-145 negatively regulated the invasion of cell lines through targeting N-cadherin by directly binding to its 3′-untranslated region. Silencing of N-cadherin inhibited invasion and migration of LAC cell lines similar to miR-145 overexpression.

Conclusions

MiR-145 could inhibit invasion and migration of lung adenocarcinoma cell lines by directly targeting N-cadherin.
  相似文献   

10.

Background

The breakdown of alveolar barrier dysfunction contributes to Lipopolysaccharide stimulated pulmonary edema and acute lung injury. Actin cytoskeleton has been implicated to be critical in regulation of epithelial barrier. Here, we performed in vivo and in vitro study to investigate role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced ALI.

Methods

For in vivo studies, 6–8-week-old C57 mice were used, Bronchoalveolar lavage Fluid /Blood fluorescent ratio, wet-to-dry lung weight ratio, as well as protein concentrations and neutrophil cell counts in BALF were detected as either directly or indirectly indicators of pulmonary alveolar barrier dysfunction. And hematoxylin and eosin staining was performed to estimate pulmonary injury. The in vitro explorations of transepithelial permeability were achieved through transepithelial electrical resistance measurement and testing of FITC-Dextran transepithelial flux in A549. In addition, cytoskeletal rearrangement was tested through F-actin immunostaining. And SB203580 was used to inhibit p38 MAPK activation, while siRNA was administered to genetically knockdown specific protein.

Results

We showed that LPS triggered activation of p38 MAPK, rearrangement of cytoskeleton which resulted in severe epithelial hyperpermeability and lung edema. A549 pretreated with TLR4 siRNA、p38 MAPK siRNA and its inhibitor SB203580 displayed a lower permeability and fewer stress fibers formation after LPS stimulation, accompanied with lower phosphorylation level of p38 MAPK and Hsp27, which verified the involvement of TLR4-p38 MAPK-Hsp27 in LPS-evoked alveolar epithelial injury. Inhibition of p38 MAPK activity with SB203580 in vivo attenuated pulmonary edema formation and hyperpermeability in response to LPS.

Conclusions

Our study demonstrated that LPS increased alveolar epithelial permeability both in vitro and in vivo and that TLR4- p38 MAPK- Hsp27 signal pathway dependent actin remolding was involved in this process.
  相似文献   

11.

Objective

To propose and verify a hypothesis that miR-17-5p knockdown may mitigate atherosclerotic lesions using atherosclerotic ApoE?/? mice as serum microRNA-17-5p (miR-17-5p) is elevated in patients with atherosclerosis.

Results

The level of miR-17-5p was higher while the level of very low density lipoprotein receptor (VLDLR), a predicted target of miR-17-5p, was lower in the peripheral blood lymphocytes (PBLs) of atherosclerosis patients as compared with control PBLs. ApoE?/? mice fed with a high-cholesterol diet displayed marked atherosclerotic vascular lesions, which were ameliorated after treatment with antagomiR-17-5p. Moreover, the decreased VLDLR in atherosclerotic mice was partly restored when miR-17-5p was antagonized. Further, luciferase assay confirmed VLDLR as a direct target of miR-17-5p in vascular smooth muscle cells (VSMCs). In addition, the elevated expression of proprotein convertase subtilisin kexin 9 (PCSK9), a secreted protease that binds to and promotes VLDLR degradation, in the atherosclerotic mice was suppressed by antagomiR-17-5p.

Conclusions

A novel interaction between miR-17-5p and VLDLR is revealed and suggests that miR-17-5p may be a potential therapeutic target for AS.
  相似文献   

12.

Background

Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC.

Methods

miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis.

Results

Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins.

Conclusion

Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.
  相似文献   

13.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

14.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

15.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

16.
17.

Background

MiRNAs are frequently abnormally expressed in the progression of human osteosarcoma. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the tumor suppressors in various types of human cancer. In the present study, we detected how hsa-miR-30a-3p regulated PTEN and further tested the role of hsa-miR-30a-3p in the cell proliferation of osteosarcoma cells.

Methods

The levels of miR-30a were determined by real time PCR. The expression of PTEN was tested by western blotting analysis. Cell distribution of PTEN was observed with confocal laser scanning microscope. Cell viability was determined by MTT assay.

Results

The expression of miR-30a and PTEN was obviously decreased in MG-63, 143B and Saos-2 cells compared with primary osteoblasts. TargetScan analysis data showed miR-30a might bind with position 30-57 of 3’UTR of PTEN. Transfection with miR-30a-3p increased the level of PTEN in MG-63 cells, while transfection with miR-30a-3p inhibitor significantly decreased the expression of PTEN in osteosarcoma cells. Transfection with miR-30a-3p significantly inhibited cell proliferation of osteosarcoma cells, while miR-30a inhibitor obviously promoted cell viability of MG63 cells and Saos-2 cells. Inhibition of PTEN eliminated the proliferation inhibitory effect of miR-30a-3p.

Conclusion

Thus, all these findings revealed the anti-tumor effects of miR-30a in human osteosarcoma cells, which could be mediated by regulating the level of PTEN.
  相似文献   

18.

Objectives

To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC).

Results

In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2.

Conclusion

miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
  相似文献   

19.

Objectives

To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts.

Results

After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3′-untranslated region (3′-UTR). Using the dual-luciferase assay, we found miR-130b-3p and miR-301b-3p could inhibit Rb1cc1 expression by binding to its 3′-UTR. Real-time PCR showed Rb1cc1 mRNA expression level was almost reciprocal to that of miR-130b-3p or miR-301b-3p during myogenic differentiation. Furthermore, over-expression of miR-130b-3p or miR-301b-3p down-regulated the expression levels of Rb1cc1, myoblast determination protein, myogenin and myosin heavy chain.

Conclusions

miR-130b-3p or miR-301b-3p negatively regulate Rb1cc1 expression to affect myogenic differentiation.
  相似文献   

20.

Background

Despite diverging levels of amyloid-β (Aβ) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aβ or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline.

Methods

miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n =?96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n =?7–9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics.

Results

Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances.

Conclusion

Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号