首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To use HIV-1 based lentivirus components to produce gene integration and the formation of a stable cell line in the packaging cell line without viral infection.

Results

A co-transfection of a Human Embryonic Kidney (HEK) 293 packaging cell line with Gag–pol (GP) and a transfer vector, without the envelope vector, produces a stable cell line after 2 weeks of selection. Furthermore, a matrix protein deficient GP in the packaging vector enhances this integration. This supports that, in theory, unexported lentiviral cores produced within the packaging cell can infect itself without requiring the release of any lentiviral particles.

Conclusion

If the packaging cell is also the target cell, then gene integration leading to a stable cell line can be accomplished without viral particle infection.
  相似文献   

2.

Objectives

To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins.

Results

AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed “CELiD” DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with “CELiD” DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %.

Conclusions

The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.
  相似文献   

3.

Background

RNA interference (RNAi) is a robust tool for inhibiting specific gene expression, but it is limited by the uncertain efficiency of siRNA or shRNA constructs. It has been shown that the overexpression of ARGONAUTE 2 (AGO2) protein increases silencing efficiency. However, the key elements required for AGO2-mediated enhancement of gene silencing in lentiviral vector has not been well studied.

Results

To explore the application of AGO2-based shRNA system in mammalian cells, we designed shRNA vectors targeting the EGFP reporter gene and evaluated the effects of various factors on silencing efficiency including stem length, loop sequence, antisense location as well as the ratio between AGO2 and shRNA. We found that 19 ~ 21-bp stem and 6- or 9-nt loop structure in the sense-loop-antisense (S-L-AS) orientation was an optimal design in the AGO2-shRNA system. Then, we constructed a single lentiviral vector co-expressing shRNA and AGO2 and demonstrated that the simultaneous expression of shRNA and AGO2 can achieve robust silencing of exogenous DsRed2 and endogenous ID1 and P65 genes. However, the titers of packaged lentivirus from constitutive expression of AGO2 vector were extremely low, severely limiting its broad application. For the first time, we demonstrated that the problem can be significantly improved by using the inducible expression of AGO2 lentiviral system.

Conclusions

We reported a novel lentiviral vector with an optimal design of shRNA and inducible AGO2 overexpression which provides a new tool for RNAi research.
  相似文献   

4.

Background

Non-viral vectors for gene transfer are less immunogenic than viral vectors but also less efficient. Significant effort has focused on enhancing non-viral gene transfer efficiency by increasing nuclear import of plasmid DNA, particularly by coupling nuclear localization peptidic sequences to plasmid DNA.

Results

We have coupled a 62-aminoacid peptide derived from hSRP1α importin beta binding domain, called the IBB peptide to plasmid DNA by using the heterobifunctional linker N-(4-azido-2,3,5,6 tetrafluorobenzyl)-6-maleimidyl hexanamide (TFPAM-6). When covalently coupled to plasmid DNA, IBB peptide did not increase the efficiency of cationic lipid mediated transfection. The IBB peptide was still able to interact with its nuclear import receptor, importin β, but non-specifically. However, we observed a 20-fold increase in reporter gene expression with plasmid DNA / IBB peptide complexes under conditions of inefficient transfection. In which case, IBB was associated with plasmid DNA through self assembling ionic interaction.

Conclusions

The improvement of transfection activity was not due to an improved nuclear import of DNA, but rather by the modification of physicochemical properties of IBB peptide / plasmid complexes. IBB peptide increased lipoplex size and these larger complexes were more efficient for gene transfer.
  相似文献   

5.

Objectives

To test the applicability of Cpf1 from Francisella novivida in genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.

Results

An easy-to-use vector toolkit, containing a CEN6/ARS4 plasmid expressing Cpf1 from Francisella novivida (FnCpf1) and a 2 μ plasmid for crRNA or crRNA array expressing, was constructed for Cpf1-assisted genomic integration in S. cerevisiae. Our results showed that FnCpf1 allowed for targeted singleplex, doubleplex, and tripleplex genomic integration of in vivo assembled DNA parts with efficiencies of 95, 52, and 43%, respectively.

Conclusions

CRISPR-Cpf1 system allows for efficient genomic integration of in vivo assembled DNA parts in S. cerevisiae, and thus provides an alternative CRISPR-Cas method for metabolic pathway engineering in addition to CRISPR-Cas9 system previously reported for yeast.
  相似文献   

6.

Objective

Develop an engineered cell line containing two flexible gene expression systems enabling the continuous production of tailor-made recombinant gammaretrovirus with predictable productivities through targeted integration.

Results

Dual-FLEX cells (dFLEX) contain two independent recombinase-mediated cassette exchange (RMCE) systems which confer flexibility to the expression of different transgene and envelope combinations. The flexible envelope expression in dFLEX cells was validated by pseudotyping retrovirus particles with three different viral envelope proteins—GaLV, 4070A and VSV-G. Our results show that dFLEX cells are able to provide high titers of infectious retroviral particles with a single-copy integration of the envelope constructs after RMCE. The integrated CRE/Lox tagging cassette was amenable to express envelope proteins both using constitutive (i.e. CMV) and inducible (i.e. Tet-on) promoters.

Conclusions

dFLEX cell line provides predictable productivities of recombinant retrovirus pseudotyped with different envelope proteins broadening the tropism of particles that can be generated and thus accelerating the research and development of retrovirus-based products.
  相似文献   

7.
8.

Background

Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens.

Methods

Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice.

Results

A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response.

Conclusions

Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.
  相似文献   

9.

Background

The ability to transform normal human cells into cancer cells with the introduction of defined genetic alterations is a valuable method for understanding the mechanisms of oncogenesis. Easy establishment of immortalized but non-transformed human cells from various tissues would facilitate these genetic analyses.

Results

We report here a simple, one-step immortalization method that involves retroviral vector mediated co-expression of the human telomerase protein and a shRNA targeting the CDKN2A gene locus. We demonstrate that this method could successfully immortalize human small airway epithelial cells while maintaining their chromosomal stability. We further showed that these cells retain p53 activity and can be transformed by the KRAS oncogene.

Conclusions

Our method simplifies the immortalization process and is broadly applicable for establishing immortalized epithelial cell lines from primary human tissues for cancer research.
  相似文献   

10.

Background

Equine infectious anemia virus (EIAV) is an important animal model for understanding the relationship between viral persistence and the host immune response during lentiviral infections. Comparison and analysis of the codon usage model between EIAV and its hosts is important for the comprehension of viral evolution. In our study, the codon usage pattern of EIAV was analyzed from the available 29 full-length EIAV genomes through multivariate statistical methods.

Finding

Effective number of codons (ENC) suggests that the codon usage among EIAV strains is slightly biased. The ENC-plot analysis demonstrates that mutation pressure plays a substantial role in the codon usage pattern of EIAV, whereas other factors such as geographic distribution and host translation selection also take part in the process of EIAV evolution. Comparative analysis of codon adaptation index (CAI) values among EIAV and its hosts suggests that EIAV utilize the translational resources of horse more efficiently than that of donkey.

Conclusion

The codon usage bias in EIAV is slight and mutation pressure is the main factor that affects codon usage variation in EIAV. These results suggest that EIAV genomic biases are the result of the co-evolution of genome composition and the ability to evade the host’s immune response.
  相似文献   

11.

Objectives

To establish a positive cloning system with a zero background for high-throughput DNA cloning purpose.

Results

The cloning vector, pRI857, and the genomic-library construction vector, pRI857-BAC, were constructed based on the mechanism of expression of the thermo-sensitive cI857 repressor gene that can stringently repress the PR promoter and kanamycin resistance gene (PR-kan R ) at 30 °C, but have no effect on PR-kan R gene at 37 °C or at higher temperatures. When the pRI857 vectors were transformed into E. coli with or without a target foreign DNA fragment inserted at the BfrBI site of the cI857 gene, only colonies with the foreign DNA fragment survive. We extended this method to construct a pRI857-BAC vector for genomic library cloning which displays an efficiency of ~107 cfu per µg of genomic DNA, with no empty vectors detected.

Conclusions

Cloning by indirect activation of resistance marker gene represents a novel DNA-capturing system, which can be widely applied for high-throughput DNA cloning.
  相似文献   

12.

Background

Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work.

Methods

Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation.

Results

The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples.

Conclusions

Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
  相似文献   

13.

Background

Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine.

Methods

We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope.

Results

We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF)?>?6), a subset of which were experimentally confirmed using site-directed mutagenesis.

Conclusions

Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.
  相似文献   

14.

Objective

To develop a simple method for efficient expression of classical swine fever virus (CSFV) E2 protein.

Results

The pFastBac HT B vector (pFastHTB-M1) was modified by adding a melittin signal peptide sequence. The E2 gene fragment without the transmembrane region was cloned into pFastHTB-M1. The modified vector has clear advantage over the original one, as evidenced by the purified recombinant E2 protein that was detected significantly by SDS-PAGE.

Conclusions

The modified vector has the potential for large-scale production and easy purification of the CSFV E2 protein or other proteins of interests.
  相似文献   

15.

Objectives

To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development.

Results

Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios.

Conclusion

Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.
  相似文献   

16.

Background

Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet.

Methods

RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays.

Results

In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector.

Conclusions

Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.
  相似文献   

17.

Background

The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions.

Results

We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses.

Conclusions

We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.
  相似文献   

18.

Objectives

To evaluate MDCK and MDCK-SIAT1 cell lines for their ability to produce the yield of influenza virus in different Multiplicities of Infection.

Results

Yields obtained for influenza virus H1N1 grown in MDCK-SIAT1 cell was almost the same as MDCK; however, H3N2 virus grown in MDCK-SIAT1 had lower viral titers in comparison with MDCK cells. The optimized MOIs to infect the cells on plates and microcarrier were selected 0.01 and 0.1 for H1N1 and 0.001 and 0.01 for H3N2, respectively.

Conclusions

MDCK-SIAT1 cells may be considered as an alternative mean to manufacture cell-based flu vaccine, especially for the human strains (H1N1), due to its antigenic stability and high titer of influenza virus production.
  相似文献   

19.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号