首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

2.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

3.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

4.
Glutathione (GSH) degradation exists in the enzymatic synthesis of GSH by Escherichia coli, however, its degradation pathway is not very clear. This paper examines the key enzymes responding to GSH degradation in E. coli with the purpose of improving GSH production. The enzymes that are probably associated with GSH degradation were investigated by disrupting their genes. The results suggested that γ-glutamyltranspeptidase (GGT) and tripeptidase (PepT) were the key enzymes of GSH degradation, and GGT contributed more to GSH degradation than PepT. Furthermore, GGT activity was affected greatly by culture temperature, and the effect of GGT on GSH degradation could be eliminated by shortening the culture time at 30°C and extending the induction time at 42°C. However, the effect of PepT on GSH degradation could be eliminated only by disrupting the PepT gene. Finally, GSH degradation was not observed in GSH biosynthesis by E. coli JW1113 (pepT , pBV03), which was cultured at 30°C for 3 h and 42°C for 5 h. GSH concentration reached 15.60 mM, which was 2.19-fold of the control. To the best of our knowledge, this is the first report of prohibiting GSH degradation with PepT-deficient recombinant E. coli. The results are helpful to investigate the GSH metabolism pathway and construct a GSH biosynthesis system.  相似文献   

5.

Background  

Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments.  相似文献   

6.
Coupling lactate fermentation with cell growth was investigated in shake-flask and bioreactor cultivation systems by increasing aeration to improve lactate productivity in Escherichia coli CICIM B0013-070 (ackA pta pps pflB dld poxB adhE frdA). In shake-flasks, cells reached 1 g dry wt/l then, cultivated at 100 rpm and 42°C, achieved a twofold higher productivity of lactic acid compared to aerobic and O2-limited two-phase fermentation. The cells in the bioreactor yielded an overall volumetric productivity of 5.5 g/l h and a yield of 86 g lactic acid/100 g glucose which were 66% higher and the same level compared to that of the aerobic and O2-limited two-phase fermentation, respectively, using scaled-up conditions optimized from shake-flask experiments. These results have revealed an approach for improving production of fermentative products in E. coli.  相似文献   

7.
Nucleotide and amino acid sequences of Corynebacterium glutamicum recA genes, from GenBank, were compared in silico. On the basis of the identity found between sequences, two degenerate primers were designed on the two sides of the deduced open reading frame (ORF) of the recA gene. PCR experiments, for amplifying the recA ORF region, were done. pGEM®-T Easy vector was selected to be used for cloning PCR products. Then recA ORF was placed under the control of Escherichia coli hybrid trc promoter, in pKK388-1 vector. pKK388-1 vector, containing recA ORF, was transformed to E. coli DH5α ΔrecA (recombinant deficient strain), in an attempt to phenotypically complement it. Ultraviolet (u.v.) exposure experiments of the transformed and non-transformed E. coli DH5α ΔrecA cells revealed tolerance of transformed cells up to dose 0.24 J/cm2, while non-transformed cells tolerated only up to dose 0.08 J/cm2. It is concluded that phenotypic complementation of E. coli DH5α ΔrecA with recA ORF of C. glutamicum, could be achieved and RecA activity could be restored.  相似文献   

8.
9.
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.  相似文献   

10.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The 5-aminolevulinate (ALA) synthase gene (hemA) containing several codons rarely used by Escherichia coli was cloned from the genome of Rhodobacter sphaeroides and optimized in two strains of Escherichia coli: BL21(DE3) and Rosetta(DE3), which is a rare codon optimizer strain. The effects of initial isopropyl-β-d-thiogalactopyranoside (IPTG) concentration, induction time, and temperature on enzyme activity were studied and compared for two strains. The results indicated that the ALA synthase expressed by Rosetta(DE3)/pET-28a(+)-hemA was higher than that by BL21(DE3)/pET-28a(+)-hemA. The initial precursors, glycine and succinate, and initial glucose, which is an inhibitor for both ALA synthase and dehydratase, were observed to be the key factors affecting ALA production. ALA synthase activity was generally higher with Rosetta(DE3) than with BL21(DE3), so was ALA biosynthesis. Based on the optimal culture system using Rosetta(DE3), the yield of ALA achieved 3.8 g/l (29 mM) under the appropriate conditions in fermenter.  相似文献   

12.
The dnaF mutant of Escherichia coli has been shown to contain very low ribonucleoside diphosphate reductase activity. The B1 sub unit of the reductase is heat-sensitive in the mutant.  相似文献   

13.
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell’s productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.  相似文献   

14.
Uropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.  相似文献   

15.

Background

Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.

Results

The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lpp β genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L-1 at the end of the process.

Conclusions

This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
  相似文献   

16.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

17.
The subject of this review covers modern experimental procedures for chromosomal gene replacement in Escherichia coli and related bacteria, which enable the specific substitution of targeted genome sequences with copies of those carrying defined mutations. Two principal methods for gene replacement were established. The first “in–out” method is based on integration of plasmid into bacterial chromosome and subsequent resolving of the cointegrate. The “linear fragment” method (recombineering) is based on homologous recombination mediated by short homology arms at the ends of linear DNA molecule. Many new protocols and improvements in targeted gene replacement were introduced during the last 10 years. These methods are well suited for high-throughput functional gene studies and for many biotechnological applications.  相似文献   

18.
DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.  相似文献   

19.
Intracellular NADPH/NADP+ ratio in cells grown on various production media with different carbon and nitrogen sources had a positive correlation with the thymidine production. To improve thymidine production in a previously engineered E. coli strain, NAD+ kinase was overexpressed in it resulting in the NADPH/NADP+ ratio shifting from 0.184 to 0.267. The [NADH + NADP+]/[NAD+ + NADPH] ratio was, however, not significantly altered. In jar fermentation, 740 mg thymidine l−1 was produced in parental strain, while 940 mg l−1 of thymidine was produced in NAD+ kinase-expressing strain.  相似文献   

20.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号