首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Recently, the gene coding for a new beta-glucuronidase enzyme has been identified and cloned from Streptococcus equi subsp. zooepidemicus. This is another report of a beta-glucuronidase gene cloned from bacterial species. The ORF Finder analysis of a sequenced DNA (EMBL, AJ890474) revealed a presence of 1,785 bp large ORF potentially coding for a 594 aa protein. Three protein families in (Pfam) domains were identified using the Conserved Domain Database (CDD) analysis: Pfam 02836, glycosyl hydrolases family 2, triose phosphate isomerase (TIM) barrel domain; Pfam 02837, glycosyl hydrolases family 2, sugar binding domain; and Pfam 00703, glycosyl hydrolases family 2, immunoglobulin-like beta-sandwich domain. To gain more insight into the enzymatic activity, the domains were used to generate a bootstrapped unrooted distance tree using ClustalX. The calculated distances for two domains, TIM barrel domain, and sugar-binding domain were comparable and exhibited similarity pattern based on function and thus being in accordance with recently published works confirming beta-glucuronidase activity of the enzyme. The calculated distances and the tree arrangement in the case of centrally positioned immonoglobulin-like beta-sandwich domain were somewhat higher when compared to other two domains but clustering with other beta-glucuronidases was rather clear. Nine proteins, including beta-glucuronidases, beta-galactosidase, and mannosidase were selected for multiple alignment and subsequent distance tree creation.  相似文献   

4.
A glycosyl hydrolase family 54 (GH54) α-l-arabinofuranosidase gene (abfA) of Aureobasidium pullulans was amplified by polymerase chain reaction from genomic DNA and a 498-amino-acid open reading frame deduced from the DNA sequence. Modeling of the highly conserved A. pullulans AbfA protein sequence on the crystal structure of Aspergillus kawachii AkabfB showed that the catalytic amino acid arrangement and overall structure were highly similar including the N-terminal catalytic and C-terminal arabinose binding domains. The abfA gene was expressed in Saccharomyces cerevisiae, and the heterologous enzyme was purified. The protein was monomeric, migrating at 49 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and eluting at 36 kDa upon gel filtration. AbfA showed maximal activity at 55°C and between pH 3.5 and pH 4. The enzyme had a K m value for p-nitrophenyl-α-l-arabinofuranoside of 3.7 mM and a V max of 34.8 μmol min−1 mg protein−1. Arabinose acted as a noncompetitive inhibitor with a K i of 38.4 mM. The enzyme released arabinose from maize fiber, oat spelt arabinoxylan, and wheat arabinoxylan, but not from larch wood arabinogalactan or α-1,5-debranched arabinan. AbfA displayed low activity against α-1,5-l-arabino-oligosaccharides. The enzyme acted synergistically with endo-β-1,4-xylanase in the breakdown of wheat arabinoxylan. Binding of AbfA to xylan from several sources confirmed the presence of a functional carbohydrate-binding module. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
The blattisociid mite Lasioseius floridensis Berlese was found associated with the broad mite, Polyphagotarsonemus latus (Banks), on gerbera leaves in Mogi das Cruzes, State of Sao Paulo, Brazil. Blattisociid mites are not common on aerial plant parts, except under high air humidity levels. Some Lasioseius species have been mentioned as effective control agents of rice pest mites, but nothing is known about the biology of L. floridensis. The objective of this study was to evaluate whether the observed co-occurrence of L. floridensis and P. latus was just occasional or whether the latter could be important as food source for the former, assumed by laboratory evaluation of the ability of the predator to maintain itself, reproduce and develop on that prey. Biological parameters of L. floridensis were compared when exposed to P. latus and to other items as food. The study showed that mating is a pre-requisite for L. floridensis to oviposit and that oviposition rate was much higher on the soil nematode Rhabditella axei (Cobbold) (Rhabditidae) than on P. latus. Ovipositon on the acarid mite Tyrophagus putrescentiae (Schrank) was about the same as on P. latus, but it was nearly zero when the predator was fed the fungi Aspergillus flavus Link or Penicillium sp., or cattail (Typha sp.) pollen. Survivorship was higher in the presence of pollen and lower in the presence of A. flavus or Penicillium sp. than in the absence of those types of food. Life table parameters indicated that the predator performed much better on R. axei than on P. latus. To evaluate the potential effect of L. floridensis as predator of P. latus, complementary studies are warranted to determine the frequency of migration of L. floridensis to aerial plant parts, when predation on P. latus could occur.  相似文献   

7.
Pinus pinaster and P. pinea are two important pine species in Portugal. These two pine species show different susceptibility to Bursaphelenchus xylophilus, the nematode causing pine wilt disease, as well as a diverse volatile composition. To clarify the role of terpenes in plant–nematode interactions, the α-pinene synthase gene expression was studied, using P. pinaster and P. pinea in vitro axenic shoot cultures. Identification and isolation of α-pinene synthase genes from both pine species was performed, together with functional characterization of the genes, revealing that the translated amino acid sequences between both species shared 97.3 % pairwise identity. Heterologous expression of full and truncated sequences, devoid of the 48 amino acids of the transit peptide, proved the functionality of both, with the production of α-pinene as the major final product. Relative quantification of protein activity showed a twofold increase of α-pinene production at 4 °C in comparison to assays performed at 21 and 37 °C. Both MnCl2 and KCl were required for substrate conversion. Furthermore, the variation in gene expression was studied by RT-PCR, using both axenic in vitro shoot pine cultures and co-cultures with B. xylophilus. In P. pinaster there was no difference between co-cultures and control cultures, while in P. pinea α-pinene synthase gene was upregulated in the co-cultures, with a peak of expression at 24 hpi (h post inoculation).  相似文献   

8.
Root segments from seedlings of Panax ginseng produced adventitious roots directly when cultured on 1/2 MS solid medium lacking NH4NO3 and containing 3.0 mg l−1 IBA. Using this adventitious root formation, we developed rapid and efficient transgenic root formation directly from adventitious root segments in P. ginseng. Root segments were co-cultivated with Agrobacterium tumefaciens (GV3101) caring β-glucuronidase (GUS) gene. Putative transgenic adventitious roots were formed directly from root segments on medium with 400 mg l−1 cefotaxime and 50 mg l−1 kanamycin. Kanamycin resistant adventitious roots were selected and proliferated as individual lines by subculturing on medium with 300 mg l−1 cefotaxime and 50 mg l−1 kanamycin at two weeks subculture interval. Frequency of transient and stable expression of GUS gene was enhanced by acetosyringon (50 mg l−1) treatment. Integration of transgene into the plants was confirmed by the X-gluc reaction, PCR and Southern analysis. Production of transgenic plants was achieved via somatic embryogenesis from the embryogenic callus derived from independent lines of adventitious roots. The protocol for rapid induction of transgenic adventitious roots directly from adventitious roots can be applied for a new Agrobacterium tumefaciens-mediated genetic transformation protocol in P. ginseng.  相似文献   

9.
10.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

11.
TNFalpha and TNFbeta, or linfotoxin (LTalpha), are two molecules playing an important role in inflammation. Their genes map on Chromosome 6, between the HLA class II and class I loci. Polymorphisms in, or near, TNF genes have been associated with susceptibility to several autoimmune diseases. Studies of TNF genes in celiac disease (CD) have presented contradictory results. We have assessed the role of TNFalpha and linfotoxin alpha (TNFbeta) in CD and their relative value as CD markers in addition to the presence of DQ2. The TNFA -308 polymorphism and the polymorphism at the first intron of the LTA gene were typed in CD patients and healthy controls and the results were correlated with the presence of DQ2. Significant differences were found in genotype and allele frequencies for the TNFA and LTA genes between CD patients and controls, with an increase in the presence of the TNFA*2 and LTA*1 alleles in CD patients. These differences increase when DQ2-positive CD patients and DQ2-positive controls are compared. In DQ2-positive individuals, allele 2 (A) in position -308 of the promoter of TNFA and allele 1 (G) of the NcoI RFLP in the first intron of LTA are additional risk markers for CD.  相似文献   

12.
We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.  相似文献   

13.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

14.
15.
Previously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs). The affinities of the mutant TCRs were analysed after refolding of separately expressed α and β chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants. An attractive alternative would be soluble expression within the bacterial periplasm, but the generic production of TCRs within the E. coli periplasm has so far not proved successful. Here we show that functional, soluble TCR can be produced within the cytoplasm of trxB gor mutant E. coli strains, with maximum yields of 3.4 mg/l. We also investigated the effect of coexpressing the folding modulators Skp and DsbC finding that the TCR expression levels were largely unaffected by these chaperones. Importantly, we demonstrated that the amount of protein purified from 50 ml starter cultures was sufficient to show functionality of the TCR by specific antigen binding in both ELISA and surface plasmon resonance (SPR) assays. This TCR production method has the potential to allow rapid and medium throughput analysis of affinity-matured TCRs selected from TCR phage display libraries.  相似文献   

16.
Acidic α-mannosidase is an important enzyme and is reported from many different plants and animals. Lysosomal α-mannosidase helps in the catabolism of glycoproteins in the lysosomes thereby playing a major role in cellular homeostasis. In the present study lysosomal α-mannosidase from the gonads of echinoderm Asterias rubens was isolated and purified. The crude protein sample from ammonium sulfate precipitate contained two isoforms of mannosidase as tested by the MAN2B1 antibody, which were separated by anion exchange chromatography. Enzyme with 75 kDa molecular weight was purified and biochemically characterized. Optimum pH of the enzyme was found to be in the range of 4.5–5 and optimum temperature was 37 °C. The activity of the enzyme was inhibited completely by swainsonine but not by 1-deoxymannojirimycin. Ligand blot assays showed that the enzyme can interact with both the lysosomal enzyme sorting receptors indicating the presence of mannose 6-phosphate in the glycan surface of the enzyme. This is the first report of lysosomal α-mannosidase in an active monomeric form. Its interaction with the receptors suggest that the lysosomal enzyme targeting in echinoderms might follow a mannose 6-phosphate mediated pathway similar to that in the vertebrates.  相似文献   

17.
The stored-product mites are the most abundant and frequent group of pests living on the stored food products in Europe. They endanger public health since they produce allergens and transmit mycotoxin-producing fungi. Novel acaricidal compounds with inhibitory effects on the digestive enzymes of arthropods are a safe alternative to the traditional neurotoxic pesticides used for control of the stored-product pests. In this work, we explored the properties of acarbose, the low molecular weight inhibitor of -amylases (AI), as a novel acaricide candidate for protection of the stored products from infestation by Acarus siro (Acari: Acaridae). In vitro analysis revealed that AI blocked efficiently the enzymatic activity of digestive amylases of A. siro, and decreased the physiological capacity of mites gut in utilizing a starch component of grain flour. In vivo experiments showed that AI suppressed the population growth of A. siro. The mites were kept for three weeks on experimental diet enriched by AI in concentration range of 0.005 to 0.25%. Population growth of A. siro was negatively correlated with the content of AI in the treated diet with a half-population dose of 0.125%. The suppressive effect of AIs on stored-product mites is discussed in the context of their potential application in GMO crops  相似文献   

18.
Molecular genetic analysis of melibiose-fermenting Saccharomyces strains isolated from fermentative processes and natural sources in different world regions was conducted to deduce the evolutionary diversity of Saccharomyces yeasts and find new α-galactosidase MEL genes. The species S. bayanus, S. mikatae, and S. paradoxus were shown to have a single copy of MEL and not accumulate polymeric genes, unlike some S. cerevisiae populations. The polymeric genes MELp1 and MELp2 were identified in S. paradoxus for the first time. Genes identical by 98.7% are located on the chromosomes X and VI, respectively. Phylogenetic analysis indicates that MEL genes of the Saccharomyces yeasts are species-specific.  相似文献   

19.
The psychrotrophic fungus Chrysosporium pannorum A-1 is reported for the first time as a novel biocatalyst for O2-promoted oxidation of α-pinene. GC–MS analysis indicated that the main products of the reaction were compounds of a high commercial value, verbenol (1) and verbenone (2). Exponentially growing cells (days 2–3) were about twice as active as cells in the late stationary phase in terms of the total concentration of products. The highest yields of 1 and 2 were obtained using three-day and two-day-old mycelia and a medium containing 1.5 and 1 % (v/v) of the substrate, respectively. The optimal time for the bioconversion of α-pinene varied from 1 to 3 days, and depended on the kind of product desired. Most of 1 was produced at a relatively high concentration of 360 mg/L after the first six hours of α-pinene bioconversion [with an average yield of 69 mg/(g dry cell L aqueous phase)]. The oxidative activity of C. pannorum was identified across a wide temperature range of 5–25 °C, 10 °C being the optimum for the production of 1 and 20 °C for the production of 2. Sequential addition of the substrate during 3 days of the biotransformation resulted in a significant increase in 1 and 2 up to 722 and 176 mg/L, respectively, and a 2-fold enhancement of product yield as compared to bioconversion with a single supply of α-pinene. The concentration of total conversion products in the culture medium reached 1.33 g/L [which corresponded product yield of 225 mg/(g dry cell L)]. This represents probably the most promising result reported to date for oxidative biotransformation of α-pinene by a wild-type microorganism.  相似文献   

20.
Recently, a new gene encoding β-glucuronidase from Streptococcus equi subsp. zooepidemicus (SEZ) was identified and expressed in Escherichia coli. In this paper, the characterization of the enzyme is described. Specific enzyme activity was 120,000 U/mg purified protein at 37°C and pH = 7.0. The temperature and pH value, at which the enzyme has the highest specific activity, were determined and were found to be approximately 52°C and 5.6, respectively. The mutant strain SEZ glcHis was designed for the efficient isolation of β-glucuronidase from S. equi subsp. zooepidemicus. It was observed that the specific activity of β-glucuronidase in the cytoplasmic extract of a mutated strain was about 45% lower than in the cytoplasmic extract of a wild-type strain. The specific activity of purified β-glucuronidase from SEZ glcHis was four times as low as β-glucuronidase purified from E. coli. Comparing the specific activity of purified streptococcal β-glucuronidase from E. coli with E. coli β-glucuronidase (the enzyme with the highest specific activity was supplied by Sigma), the former is 1.8 higher than the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号