首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whole-cell patch-clamp techniques were applied to Chinese hamster ovary cells stably expressing cloned smooth muscle Ca(2+) channel alpha(1)-subunits. In the presence of Ba(2+) as a charge carrier, U-shaped inactivation was observed in the presence and absence of Ca(2+) agonists. Also, tail currents deactivated slowly when conditioning steps of positive potential were applied. The deactivation time constant was decreased by hyperpolarizing the repolarization step. Application of ATP-gamma-S or H-7 had little effect on the conditions necessary to induce slow tail, suggesting involvement of physical processes in the channel protein. In the presence of Bay K 8644, additional application of nifedipine decreased the amplitudes of the test and tail currents induced by a test step preceded by a conditioning step to +80 mV, but did not affect the decay time constant of the tail current. From these results and assumptions we have drawn up a kinetic scheme with one closed state, two open states (O(1), O(2)) and two inactivated states linked to the closed state and open state O(1), respectively, i.e., open state O(2) protected from inactivation. Computer calculation reconstructed slow deactivation and U-shaped inactivation properties. A similar kinetic scheme with Ca(2+)-agonist-binding states accounted for the results in the presence of Ca(2+) agonists.  相似文献   

2.
Voltage clamp currents from medium sized ganglion cells of Helix pomatia have a fast transient outward current component in addition to the usually observed inward and outward currents. This component is inactivated at normal resting potential. The current, which is carried by K+ ions, may surpass leakage currents by a factor of 100 after inactivation has been removed by hyperpolarizing conditioning pulses. Its kinetics are similar to those of the inward current, except that it has a longer time constant of inactivation. It has a threshold close to resting potential. This additional component is also present in giant cells, where however, it is less prominent. Pacemaker activity is controlled by this current. It was found that inward currents have a slow inactivating process in addition to a fast, Hodgkin-Huxley type inactivation. The time constants of the slow process are similar to those of slow outward current inactivation.  相似文献   

3.
Urocortin (UCN) II, a newly isolated corticotropinreleasing- factor (CRF) related peptide, has been found to have potent cardiovascular protective effects. To investigate the mechanisms of its vascular protective effects, we exposed mesenteric arterial smooth muscle cells (MASMC) from spontaneously hypertensive rats (SHR) to UCN II to observe the change in cell apoptosis using TUNEL assay and measured intracellular calcium concentration ([Ca2+]i) using confocal laser scanning microscope. In addition, effects of UCN II on L-type calcium currents (ICa,L) were also measured using whole-cell patch clamp. Our results showed that UCN II concentration-dependently, but time-independently inhibited cell apoptosis. Astressin 2B, a special CRF 2 receptor antagonist, had no influence on this inhibition. Hypoxia or Bay K8644, the L-type calcium channel activator, induced the apoptosis of MASMC from SHR. Pretreatment of the cells with UCN II diminished the effects of hypoxia or Bay K8644. UCN II was also observed to reduce [Ca2+]i increase induced by KCl or Bay K8644. UCN II concentration-dependently inhibited ICa,L, which was not affected by astressin 2B. It did not affect the activation of ICa,L, but markedly shifted the inactivation curve to the left. In conclusion, UCN II inhibits the apoptosis of MASMC from SHR via inhibiting L-type calcium channels.  相似文献   

4.
In rat tail artery (RTA), spinal cord injury (SCI) increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist) mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR) limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control) and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker) in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.  相似文献   

5.
The effects of the Ca2+ agonist Bay K 8644 on outward potassium currents have been studied in single ventricular cells of chick embryo and aortic single cells of rabbit using the whole-cell patch clamp technique. Bay K 8644 was found to increase 1K in both heart and aortic single cells. This effect of Bay K 8644 on both muscle was reversed by Mn2+ and blocked by 20 mM TEA. The Bay K 8644 potassium I/V curve of single heart cell had a N shape, which is Ca2+ dependent. These data strongly suggest that Bay K 8644 increases a gK(Ca) in both aortic and heart muscle.  相似文献   

6.
We have examined whole-cell K+ currents and a Ca2+-dependent K+ channel at the single channel level in rostral pars distalis cells of Gillichthys mirabilis. Whole-cell K+ currents activated by depolarizing pulses have an inactivating component and a sustained component. The magnitude of both of these components is increased when a hyperpolarizing prepulse is delivered prior to depolarization. Both components are partially blocked by application of 5 mM TEA+. The Ca-dependent K+ channel, (K(Ca)), was sensitive to 2 mM TEA+ in outside-out patches (O/O) but not in inside-out patches (I/O). Channel open probability (P(o)) was dependent on membrane potential (Vm), with depolarization leading to an increase in P(o). Calcium on the cytoplasmic face of I/O patches increased channel P(o) in a dose-dependent manner. A portion of the single K(Ca) channels studied displayed inactivation after depolarizing pulses. These channels may be a component of the inactivating whole-cell current.  相似文献   

7.
The blocking action of aminopyridines on an inactivating K current (lKi) in GH3 pituitary cells was studied before and after altering the macroscopic decay of the current with N-bromoacetamide (NBA). The first depolarizing pulse delivered either seconds or minutes after beginning 4-aminopyridine (4AP) application, elicited a current with both a more rapid decay and a reduced peak amplitude. The rapid decay (or time-dependent block) was especially prominent in NBA-treated cells. With continued drug application, subsequent test pulses revealed a stable block of peak current, greater in NBA-treated than control cells. Recovery from block was enhanced by hyperpolarizing holding potentials and by the first depolarizing pulse delivered after prolonged recovery intervals. Unlike aminopyridine block of other K currents, there was no convincing evidence for voltage shifts in activation or inactivation, or for voltage and frequency-dependent unblock. Increasing the open probability of the channels did, however, facilitate the block. Although the behavior of currents in 4AP was suggestive of "open channel block," the block was not produced by 4-aminopyridine methiodide, a positively charged aminopyridine. Moreover, because partial block and recovery occurred without opening the channels we suggest that aminopyridines bind to, or near, this K channel, that this binding is enhanced by opening the channel, and that a conformational change is induced which mimics inactivation. Because recovery from block is enhanced by negative potentials, we suggest that aminopyridine molecules may become "trapped" by inactivation awaiting the slow process of reactivation to escape their binding sites.  相似文献   

8.
Summary The effects of the Ca2+ agonist Bay K 8644 on outward potassium currents have been studied in single ventricular cells of chick embryo and aortic single cells of rabbit using the whole-cell patch clamp technique. Bay K 8644 was found to increase lK in both heart and aortic single cells. This effect of Bay K 8644 on both muscle was reversed by Mn2+ and blocked by 20 mM TEA. The Bay K 8644 potassium I/V curve of single heart cell had a N shape, which is Ca2+ dependent. These data strongly suggest that Bay K 8644 increases a gK(ca) in both aortic and heart muscle.  相似文献   

9.
Single-channel properties of dihydropyridine (DHP)-sensitive calcium channels isolated from transverse tubular (T-tube) membrane of skeletal muscle were explored. Single-channel activity was recorded in planar lipid bilayers after fusion of highly purified rabbit T-tube microsomes. Two populations of DHP-sensitive calcium channels were identified. One type of channel (noninactivating) was active (2 microM +/- Bay K 8644) at steady-state membrane potentials and has been studied in other laboratories. The second type of channel (inactivating) was transiently activated during voltage pulses and had a very low open probability (Po) at steady-state membrane potentials. Inactivating channel activity was observed in 47.3% of the experiments (n = 84 bilayers). The nonstationary kinetics of this channel was determined using a standard voltage pulse (HP = -50 mV, pulse to 0 mV). The time constant (tau) of channel activation was 23 ms. During the mV). The time constant (tau) of channel activation was 23 ms. During the pulse, channel activity decayed (inactivated) with a tau of 3.7 s. Noninactivating single-channel activity was well described by a model with two open and two closed states. Inactivating channel activity was described by the same model with the addition of an inactivated state as proposed for cardiac muscle. The single-channel properties were compared with the kinetics of DHP-sensitive inward calcium currents (ICa) measured at the cellular level. Our results support the hypothesis that voltage-dependent inactivation of single DHP-sensitive channels contributes to the decay of ICa.  相似文献   

10.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

11.
Dihydropyridine Modulation of the Chromaffin Cell Secretory Response   总被引:3,自引:1,他引:2  
Prolonged perfusion of cat adrenal glands with Krebs-bicarbonate solutions containing nicotine, muscarine, or excess K rapidly increased the rate of catecholamine output proportional to the concentrations of secretagogue used. The secretory responses to nicotine or high K reached a peak and declined to almost basal rates of secretion after about 10 min of stimulation. The dihydropyridine Ca channel agonist Bay K 8644 potentiated markedly the secretory responses to 1 microM nicotine and to 17.7 mM K but not to higher concentrations of these secretagogues. The muscarinic response did not decrease with time and was modestly potentiated by Bay K 8644. Similar curves were obtained with 17.7 mM K plus Bay K 8644 and with 59 mM K alone. CGP28392, another agonist, was about 10 times less potent than Bay K 8644 in potentiating the secretory responses to 17.7 mM K. Bay K 8644 also potentiated the release of [3H]noradrenaline evoked by stimulation of cultured bovine adrenal chromaffin cells with 17.7 mM K or 2 microM nicotine but not with higher concentrations of K or nicotine. Dihydropyridine Ca channel antagonists reversed the effects of Bay K 8644 with the following order of potency: niludipine greater than nifedipine = nimodipine greater than nitrendipine. The secretory rates from intact chromaffin cells treated with the Ca ionophores X537A or A23187, or those evoked by Ca-EGTA buffers from digitonin-permeabilized cells, were not affected by Bay K 8644. These results are compatible with the following conclusions: Bay K 8644 selectively potentiates catecholamine secretory responses mediated through the activation of voltage-sensitive Ca channels; during nicotine or high-K stimulation, Ca gains access to the cell interior through a common permeability pathway, the Ca channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)- containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

13.
Linear Systems convolution analysis of muscle sodium currents was used to predict the opening rate of sodium channels as a function of time during voltage clamp pulses. If open sodium channel lifetimes are exponentially distributed, the channel opening rate corresponding to a sodium current obtained at any particular voltage, can be analytically obtained using a simple equation, given single channel information about the mean open-channel lifetime and current.Predictions of channel opening rate during voltage clamp pulses show that sodium channel inactivation arises coincident with a decline in channel opening rate.Sodium currents pharmacologically modified with Chloramine-T treatment so that they do not inactivate, show a predicted sustained channel opening rate.Large depolarizing voltage clamp pulses produce channel opening rate functions that resemble gating currents.The predicted channel opening rate functions are best described by kinetic models for Na channels which confer most of the charge movement to transitions between closed states.Comparisons of channel opening rate functions with gating currents suggests that there may be subtypes of Na channel with some contributing more charge movement per channel opening than others.Na channels open on average, only once during the transient period of Na activation and inactivation.After transiently opening during the activation period and then closing by entering the inactivated state, Na channels reopen if the voltage pulse is long enough and contribute to steady-state currents.The convolution model overestimates the opening rate of channels contributing to the steady-state currents that remain after the transient early Na current has subsided.  相似文献   

14.
Trinitrophernol (TNP) selectively alters the sodium conductance system of lobster giant axons as measured in current clamp and voltage clamp experiments using the double sucrose gap technique. TNP has no measurable effect on potassium currents but reversibly prolongs the time-course of sodium currents during maintained depolarizations over the full voltage range of observable currents. Action potential durations are increased also. Tm of the Hodgkin-Huxley model is not markedly altered during activation of the sodium conductance but is prolonged during removal of activation by repolarization, as observed in sodium tail experiments. The sodium inactivation versus voltage curve is shifted in the hyperpolarizing direction as is the inactivation time constant curve, measured with conditioning voltage steps. This shift speeds the kinetics of inactivation over part of the same voltage range in which sodium currents are prolonged, a contradiction incompatible with the Hodgkin-Huxley model. These results are interpreted as support for a hypothesis of two inactivation processes, one proceeding directly from the resting state and the other coupled to the active state of sodium conductance.  相似文献   

15.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

16.
The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.  相似文献   

17.
Our previous study on kidney cortical slices showed that Bay K 8644, a dihydropyridine calcium channel agonist, produced a dose-dependent inhibitory action on the release of renin. The present study was performed to examine the effect of Bay K 8644 on renal function and renin secretion in vivo. When Bay K 8644 was directly infused into the renal artery of anesthetized rats, 2 micrograms/kg/min had no effect on renal blood flow (RBF) and glomerular filtration rate (GFR), but decreased urine flow (UF), urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) by about 30%, 55% and 35%, respectively, thereby suggesting that Bay K 8644 enhanced the tubular reabsorption of water and sodium. When 10 micrograms/kg/min were infused, RBF, GFR, UF, UNaV and FENa decreased to about 95%, 70%, 35%, 35% and 30% of each control value. The administration of Bay K 8644 at 10 micrograms/kg/min did not influence the basal levels of plasma renin activity (PRA) and renin secretion rate (RSR), but did inhibit significantly isoproterenol-induced increasing effects on PRA and RSR. These results indicate that the activation of voltage-dependent calcium channels with Bay K 8644 influences the control of renal function and renin secretion in vivo.  相似文献   

18.
Effects of Bay K 8644, a voltage-sensitive calcium channel agonist, on atrial natriuretic polypeptide (ANP) secretion from isolated rat hearts perfused with Krebs-Henseleit solution were investigated. After a ninety-min period for stabilization, coronary sinus effluents were collected every two min and ANP levels were measured by radioimmunoassay. The basal secretory rate of ANP was 1.65 +/- 0.15 ng/min (mean +/- standard error). Bay K 8644 stimulated ANP secretion dose-dependently. This stimulatory action was blocked by simultaneous administration of nifedipine, its competitive antagonist. Heart rate was also increased by Bay K 8644 administration. In the gel filtration study, the major secretory form of ANP corresponded to alpha-rat ANP, a 28-amino acid peptide. These results suggest that voltage-sensitive calcium channels are involved in two principal biological properties, contraction and ANP secretion, of atrial cardiocytes.  相似文献   

19.
To determine the number of L-channel populations responsible for producing the two components of whole-cell L-type Ca2+ channel current revealed by Bay K 8644 (Fass, D.M., and E.S. Levitan. 1996. J. Gen. Physiol. 108:1-11), L-type Ca2+ channel activity was recorded in cell- attached patches. Ensemble tail currents from most (six out of nine) single-channel patches had double-exponential time courses, with time constants that were similar to whole-cell tail current decay values. Also, in single-channel patches subjected to two different levels of depolarization, ensemble tail currents exactly reproduced the voltage dependence of activation of the two whole-cell components: The slow component is activated at more negative potentials than the fast component. In addition, deactivation of Bay K 8644-modified whole-cell L-current was slower after long (100-ms) depolarizations than after short (20-ms) depolarizations, and this phenomenon was also evident in ensemble tail currents from single L-channels. Thus, a single population of L-channels can produce the two components of macroscopic L-current deactivation. To determine how individual L-channels produce multiple macroscopic tail current components, we constructed ensemble tail currents from traces that contained a single opening upon repolarization and no reopenings. These ensemble tails were biexponential. This type of analysis also revealed that reopenings do not contribute to the slowing of tail current deactivation after long depolarizations. Thus, individual L-channels must have access to several open states to produce multiple macroscopic current components. We also obtained evidence that access to these open states can vary over time. Use of several open states may give L-channels the flexibility to participate in many cell functions.  相似文献   

20.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号