首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高能磷酸键的概念是Lipmaan在1941年提出的,对生物化学的发展曾起过一定作用。我国1981年以前出版的生理和生化方面的书,讲ATP水解释放能量时都引用了高能磷酸键概念。由于该概念不恰当和理论上的错误,我国1982年后出版的有些生物化学  相似文献   

2.
问题解答     
问:为什么ATP中高能磷酸键的断裂是释放大量能量的反应? (郑州读者吕燕李玉成) 答:ATP是三磷酸腺苷的简称。它是由一分子腺苷和三个相连的磷酸根组成的。  相似文献   

3.
呼吸作用是一个释能的过程,植物体如何储存能量和利用能量,是一个非常重要的问题.呼吸作用放出的能量,一部分以热能的形式散失到环境中,其余部分通过ADP磷酸化形成ATP,而暂时储存在高能磷酸键中.三磷酸腺苷中的高能磷酸键是最重要的能量携带者,呼吸过程中能量的储存和利用都要靠ATP.  相似文献   

4.
剧烈运动是指持续时间短、运动强度大,以无氧供能为主的运动,但是机体的能量供应又是一个连续的统一整体。剧烈运动时能量供应主要有以下两种形式: 1.高能磷化物(ATP、CP)供能 ATP是高能化合物中最重要的一种,在提供能量中起重要作用。肌肉活动时,肌肉中的ATP在ATP酶的催化下,分解为ADP和无机磷酸,同时放出能量。每克分子ATP分解为ADP可释放7-12千卡的热能,这是肌肉收缩时唯一的直接能源。 ATP在释放能量转变为ADP后,ADP再接受能量又生成ATP。ADP虽也有一个高  相似文献   

5.
肌肉收缩为身体的各种活动提供基本动力,例如行走、写字、说话、呼吸、心跳等。肌肉收缩时,肌肉内部的化学变化和能量变化可概括成三个部分: 一、三磷酸腺苷(ATP)分解所提供的能量是肌肉收缩的直接能源. 当运动神经纤维上的神经冲动到达肌纤维时,肌纤维内一系列微观的兴奋性变化,激发了ATP酶活性,引起ATP分解成二磷酸腺苷(ADP)及磷酸根(P)高能磷酸键的断开可释放较多的能量(E)。  相似文献   

6.
ATP具有高能磷酸键,在生物体能量的交换中占着中心地位。蛋白质生物合成、肌肉收缩和磷酰基的转移等重要生理过程,都必须有它参加。同位素标记的ATP对研究代谢过程提供了一项有效的方法,对某些可利用它来测  相似文献   

7.
从这章开始,我们将介绍组成生物体的主要物质在生物体内是如何变化的,如何相互转化的,变化过程中的能量又是如何转化的,即物质代谢。首先要学习新陈代谢的有关概念,再学习具体的代谢途径。学习“新陈代谢的概念”这一节,要注意准确地掌握基本概念。如什么是新陈代谢?什么是合成代谢?什么是分解代谢?以及了解新陈代谢的特点。随着学习具体的代谢途径,对新陈代谢的认识会逐步具体、深入。在这一节中要简要介绍有关高能化合物的知识。要求掌握什么是高能化合物,并了解腺苷三磷酸(ATP)、磷酸烯醇式丙酮酸、甘油酸-1.3-二磷酸、乙酰CoA等是生物体内常见的高能化合物。对于ATP的结构应熟悉。1摩尔ATP水解成ADP时可释放出7.3千卡(30.5KJ)的能量。  相似文献   

8.
答:新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源,但体内有些合成反应不一定都直接利用ATP供能,而可以利用其他三磷酸核苷。例如UTP(三磷酸尿苷)用于多糖合成、CTP(三磷酸胞苷1用于磷脂合成、GTP(三磷酸鸟苷)用于蛋白质合成等。但物质氧化时释放的能量大都是必须先合成ATP。然后ATP可使UDP、CDP或GDP生成相应的UTP、CTP或GTP。  相似文献   

9.
探求知识的过程是生物学概念和新知识获得的重要途径。在使用北京版初中《生物学》教材时,我们始终强调从问题出发,引导学生深入探究,使之获得完整的概念。现就初中《生物学》第一册(上)中的“食物中能量”一节教学,谈谈我们的教学过程与体会。1 教学过程1.1 提出问题,引出新课 “上一节课,我们通过实验了解到小麦种子里含有有机物和无机物,它们是营养物质。除了营养,它们还有什么作用呢?”“每当我们饿了的时候,吃些面包、馒头、米饭,不久就会感到又有劲了,这些力气是从哪里得到的呢?”经过一番热烈讨论,大家一致认为这是能量的作用。于…  相似文献   

10.
心肌细胞力能学的现代问题   总被引:1,自引:0,他引:1  
心脏主要通过氧化磷酸化过程生成ATP。这一过程发生在线粒体内膜所包围的基质(matrix)内。ATP和ADP不能透过线粒体膜,生成的ATP被位于线粒体内膜的ATP-ADP易位酶,从线粒体内膜间隙转到外膜间隙,再通过磷酸肌酸途径转移到收缩系统;同时将外膜间隙的ADP转移至线粒体内膜间隙,接受高能磷酸键再合成ATP。如此往复,保障收缩系统不断得到能量供应。胞浆内高水平的肌酸和线粒体内膜间隙低水平的ADP是细胞内能量代谢过程的重要调节机制,肌酸磷酸激酶(CPK)同功酶在其中起着重要作用。肌浆网膜对于Ga~( )的摄取和释放是心肌兴奋-收缩偶联的重要调控部位。但是,除能量生成过程研究得较清楚外,涉及能量转运、贮存及利用过程的许多力能学问题尚未阐明。  相似文献   

11.
腺三磷酶(ATPase)是一种能够催化高能磷酸化合物腺三磷(ATP)分解的酶,ATP 分解后产生出大量的储藏能,因此 ATPase-ATP 系统在各种生命活动,包括胚胎发育的能量供给过程中,起着重要的作用。ATP-ase 除了与发育过程中能量的供给有关之外,还关  相似文献   

12.
ATP(三磷酸腺苷)是细胞的化学合成、交换和运动必不可少的动力。这一重要事实人们已经知道了将近50个年头。近20年来,对产生ATP的ATP合成酶在线粒体、叶绿体和细菌的“能量转换”中的重要地位,又得到进一步确认。80年代,Boyer等人首次提出了ATP合成酶催化部分的模型。指出ATP合成酶的催化部分是一个球状体,其中包括a一和卜两类亚基蛋白质,各有3个,相间排列,象陀螺一样旋转。其中卜亚基能催化产生ATP,每旋转一周,3个卜亚基就改变了形状,各自处于不同的状态,分别进行捕捉ATP一前体,催化反应和释放新形成的分子。令人遗…  相似文献   

13.
ATP(三磷酸腺苷)在生命活动中发挥着重要的生物学功能,它是生命活动的直接能量来源.ATP在组织细胞内是动态变化的,该变化过程是生命能源供给的基础.目前有不少研究关注于组织细胞内ATP的动态变化,以求了解与之相关的生命现象的特征和本质.本文就有关组织细胞内ATP的动态变化的研究作一综述,分析了病理和正常生理状态下细胞内ATP的动态变化过程以及该动态变化的机制,为构建ATP的动态变化过程理论模型提供信息基础,期望在临床生命救治和健康生命维护基础理论发掘上做出贡献.  相似文献   

14.
Guo HM  Luo YL  Zhou WL 《生理科学进展》2010,41(3):189-192
ATP不但是各种细胞的能量来源,而且更是一种自分泌或旁分泌的胞外信使,参与细胞一系列的生物学效应。ATP从呼吸道上皮细胞中释放,在调节呼吸道表面液体量的平衡、黏膜纤毛清除能力和呼吸道防御功能方面起重要作用,并参与呼吸道疾病及炎症的发生。本文对ATP从呼吸道上皮释放的途径,ATP调节呼吸道上皮离子转运的机制,ATP对呼吸道平滑肌的双重调节作用,以及ATP参与呼吸道疾病和炎症的发生机制等方面予以综述。  相似文献   

15.
《生物学通报》编委会、期刊社 :新年好 !,我是一名普通农村中学的生物学教师 ,虽然在我参加工作的时候 ,正处于我国生物学教学的低潮 ,但是我从未放弃对生物学教学的热爱 ,从未间断过订阅《生物学通报》。在跨进大学的那一年 ,一个偶然的机会 ,我在图书馆发现了它 ,从那时起我就认识了它 ,喜欢上了它 ,并一直伴我成长 ,直至成为一名优秀青年教师。真是“众里寻她千百度 ,蓦然回首 ,就在茫书海之中。”我最喜欢《生物学通报》中的“教学专题研究”、“课外科技活动”、“生物资源持续利用”等栏目 ,她丰富、拓展、深化了我的生物学知识 ,更…  相似文献   

16.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

17.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

18.
韩国《科学》教材中生物学部分的“10min探究”活动是指仅用短短的10min时间就能完成并得出相应结论的探究活动,它简单易操作,启迪学生的思维,能在有限的时间里达到良好的学习效果,通过对不同类型的“10min探究”活动进行案例分析,以期对国内的生物学教材和教学提供启示和参考。  相似文献   

19.
利用染料亲和层析(Cibacorn Blue柱)和离子交换层析(Macrosphere WCX柱)对长角血蜱Haemaphysalis longicornis唾液腺的腺苷三磷酸双磷酸酶进行纯化,经SDS-PAGE证实其分子量为66 kD。腺苷三磷酸双磷酸酶可以水解ATP和ADP,但对AMP无水解作用,水解ATP和ADP的Km值均为0.2 μmol/L,Vmax值分别为12.5和15.6 μmol/(min·mg)。腺苷三磷酸双磷酸酶水解ATP的中间产物是ADP,最终产物是AMP和正磷酸。表明腺苷三磷酸双磷酸酶水解ATP的位点是5'-核苷酸的γ-磷酸键,水解ADP的位点是5'-核苷酸的β-磷酸键。  相似文献   

20.
当有KCN存在时维生素K_3对鼠肝线粒体ATP酶活力有明显的激活作用。维生素K_3对ATP酶活力的这种抑制作用受Amytal抑制。我们认为维生素K_3的这种作用是由于构成了呼吸链与NADH之间电子循环传递,电子由细胞色素(或呼吸链上其他中间电子载体)逆传至NAD~+,利用高能磷酸链的能量使NAD~+进行需能还原生成NADH,生成的NADH再通过DT黄酶及维生素K_3重新又把电子传回呼吸链,这样电子继续不断循环,ATP即不断水解。维生素K_3激活的ATP酶可能仅牵涉NADH氧化偶联三步磷酸化作用的第一步磷酸化作用。本文结果支持我们前文中关于维生素K_3对NAD~+需能还原抑制作用的解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号