首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In previous studies we have shown that 125I-labeled prolactin is taken up by a receptor-dependent process and concentrated in an intact form in Golgi elements from female rat liver (J. Biol. Chem., 1979, 254:209- 214). In this study we have examined the effect of colchicine on this uptake process into Golgi elements. Colchicine [25 mumol (10 mg)/100 gm body wt] was injected intraperitoneally in adult female rats, and hepatic Golgi fractions were prepared at 1, 2, and 3 h postinjection. The enzyme recoveries and morphological appearance of fractions from colchicine-treated and control (alcohol alone) animals were similar. At times greater than 1 h after colchicine there was a marked (greater than 60%) inhibition of uptake of 125I-ovine prolactin (125I-oPRL) into Golgi light and intermediate fractions but no inhibition of uptake into Golgi heavy and plasmalemma elements. At times from 2 to 45 min postinjection, 125I-oPRL was extracted from Golgi elements and found to be largely intact as judged by rebinding to receptors. The inhibitory effect of colchicine was seen at doses ranging from 0.25 mumol to 25 mumol/100 g body wt. Vincristine also inhibited 125I-oPRL uptake into the Golgi light and intermediate fractions but lumicolchicine had no inhibitory effect. There was a smaller effect of colchicine both at early (1 h) and later (3 h) times on the extent and pattern of 125I- insulin uptake. Colchicine treatment did not produce a significant change in lactogen receptor levels in the Golgi fractions. These results demonstrate that colchicine treatment inhibited the transfer of prolactin into Golgi vesicular elements. The much smaller effect on insulin uptake suggests that there may be differences in the manner in which the two hormones are handled in the course of internalization.  相似文献   

2.
The mobility of 5-doxylstearic acid spin label (5-SASL) in the intact rat liver Golgi membranes of streptozotocin diabetes was studied as a function of free blood sugar level and temperature. During development of diabetes, indicated by the increase of the free blood sugar level, the membrane fluidity measured in the physiological temperature range (1) does not change in comparison with control in light diabetes, (2) decreases significantly in advanced diabetes and (3) again increases to the control level in heavy diabetes (the free blood sugar levels being 200-250 mg/100 ml, 250-350 mg/100 ml and greater than 350 mg/100 ml, respectively). The development of streptozotocin diabetes is accompanied by significant changes in lipid composition of liver Golgi membranes as also shown in our previous observations. The measurements of motion of 5-SASL in Golgi membranes as well as in vesicles, made from commercially available lipids of composition close to the liver Golgi membranes, show that a decrease of cholesterol contents is the main factor which induces the increase membrane fluidity. We suggest that in the heavy diabetes the hemostatic regulation in the lipid composition leads to minimization of alterations in membrane fluidity to obtain comparatively normal activity of certain membrane enzymes.  相似文献   

3.
Following in vivo administration of cycloheximide (20 mg/kg body weight i.p.) protein synthesis was completely inhibited (99%) in rat liver. No newly synthesized asialoglycoprotein receptor (ASGP-R) could be detected by metabolic labeling. Fluorescence immunocytochemistry of several secretory proteins and plasma membrane proteins, including the receptors for polymeric IgA (IgA-R), demonstrated a rapid loss from the Golgi complex following cycloheximide administration. On the other hand, two membrane proteins, the receptors for ASGP-R and mannose 6-phosphate (MP-R), were not altered in their cellular localization including the Golgi. Using quantitative immunoelectron microscopy with colloidal gold, we found that 2 h and 4 h after cycloheximide administration, the densities of ASGP-R and MP-R in the membranes of the Golgi complex were unaltered compared with control liver. Similarly, there was no significant effect of cycloheximide on the receptor labeling in coated vesicles and compartment of uncoupling receptors and ligands (CURL). These observations are consistent with an involvement of the Golgi and CURL pools of the receptors in intracellular trafficking, endocytosis and receptor recycling.  相似文献   

4.
Colchicine inhibited the activity of the galactosyl- and sialyltransferases of rat liver Golgi membranes. The sialyltransferase was more sensitive to the drug than galactosyltransferase since it was inhibited to a greater extent and at lower concentrations of colchicine than the galactosyltransferase. Two soluble enzymes, i.e. that from rat serum and that isolated from bovine milk, were not inhibited by colchicine. Even with very high concentrations of colchicine a marked stimulation of activity was observed. The data suggest that the inhibition observed in the Golgi membranes is in some way related to the arrangement of the enzymes in the lipid bilayer. In support of this hypothesis, the milk galactosyltransferase became very sensitive to colchicine after incorporation of the enzyme into lipid vesicles. The incorporation of colchicine into Golgi membranes was shown to decrease the order parameter as determined by electron spin resonance which reflects an increased fluidity of the Golgi membranes. A change in fluidity may be responsible for the inhibition of enzyme activity at least in part.  相似文献   

5.
The redistribution and fate of colchicine-induced alkaline phosphatase (ALPase) in rat hepatocytes were investigated by electron microscopic enzyme cytochemistry and biochemistry. ALPase activity markedly increased in rat hepatocytes after colchicine treatment (2.0 mg/kg body weight, intraperitoneal injection). At 20–24 h after colchicine treatment, the liver showed the highest activity of ALPase. Thereafter, ALPase activity decreased and returned to normal levels at 48 h. In normal hepatocytes from control rats, ALPase activity was seen only on the bile canalicular membrane. However, at 20–24 h after colchicine treatment, colchicine-induced ALPase was redistributed in the sinusoidal and lateral (basolateral) membranes as well as in the bile canalicular membrane. At 30–36 h after colchicine treatment, ALPase activity on the basolateral membrane gradually decreased. In contrast, ALPase in the bile canalicular membrane increased along with the enlargement of bile canaliculi, suggesting that ALPase in the basolateral membrane had been transported to the bile canalicular membrane. Furthermore, ALPase-positive vesicles, cisternae and autophagosome-like structures were frequently seen in the cytoplasm. ALPase was also positive in some lysosomal membranes. ALPase in hepatocytes at 48 h after colchicine treatment returned to almost the same location as in control hepatocytes. Altogether, it is suggested that excessively induced ALPase is at least partially retrieved by invagination of the bile canalicular membrane and then transported to lysosomes for degradation. In addition, this study indicates that excess plasma membrane might be a possible origin of autophagosomal membrane.  相似文献   

6.
Nimesulide (NIM), an atypical non-steroidal anti-inflammatory drug (NSAID) is also used as analgesic. In the present study, we evaluated its effect on the prooxidant-antioxidant system of liver and the hepatoprotective potential of aqueous extract of the herb Phyllanthus niruri (PN) on NIM-induced oxidative stress in vivo using a murine model, by determining the activities of hepatic anti-oxidant enzymes superoxide dismutase (SOD) and catalase (CAT), levels of reduced glutathione (GSH) and lipid peroxidation (expressed as malonaldialdehyde, MDA). Aqueous extract of PN at a dose of 50 or 100 mg/kg body wt was administered either intraperitoneally or orally for 7 days, before NIM administration at a dose of 8 mg/kg body wt twice daily for 7 days in mice. Animals were sacrificed 24 h after administration of final dose of NIM. In another set of experiments, both aqueous extract of PN (at a dose of 50 or 100 mg/kg body wt) and NIM (8 mg/kg body wt) were administered simultaneously for 7 days. Animals were sacrificed 24 h after administration of final dose of the extract and NIM, liver tissues were collected, and the activities of SOD and CAT and levels of GSH and lipid peroxidation end-product (as MDA), were determined from the livers of all the experimental animals. Appropriate NIM control was maintained for all sets of experiments. NIM administration (8 mg/kg body wt) for 7 days caused significant depletion of the levels of SOD, CAT and reduced GSH, along with the increased levels of lipid peroxidation. Intraperitoneal administration of the extract at a dose of 50 mg/kg body wt for 7 days,. prior to NIM treatment, significantly restored most of the NIM-induced changes and the effect was comparable to that obtained by administering 100 mg/kg body wt of the extract orally. Thus, results suggested that intraperitoneal administration of the extract could protect liver from NIM-induced hepatic damage more effectively than oral administration. Antioxidant property of the aqueous extract of PN was also compared with that of a known potent antioxidant, vitamin E. The PN extract at a dose of 100 mg/kg body wt along with NIM was more effective in suppressing the oxidative damage than the PN extract at a dose of 50 mg/kg body wt. Results suggested that beneficial effect of the aqueous extract of PN, probably through its antioxidant property, might control the NIM-induced oxidative stress in the liver.  相似文献   

7.
To define the role of cytoplasmic microtubules in the biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells, we studied the effect of colchicine on the incorporation of L-[1,5,6-3H]fucose into Golgi, lateral basal and microvillus membranes. Colchicine was administered intraperitoneally before or after injection of radioactive fucose. The incorporation of radioactivity into Golgi membranes was little affected by colchicine, which did not prevent the redistribution of most of the labelled glycoproteins from the Golgi complex into other parts of the villus cell. The incorporation of labelled glycoproteins into the microvillus membrane was greatly inhibited by colchicine given 2 h or 10 min before the radioactive fucose: all labelled glycoproteins present in this membrane were equally affected. In contrast, the administration of colchicine considerably increased the incorporation of radioactivity into the lateral basal part of the plasmalemma, and prevented the disappearance of most of the labelled glycoproteins from this membrane at late times after fucose injection. These results suggest that cytoplasmic microtubular structures are important for the polarization of the intestinal villus cell and the biogenesis of the microvillus membrane, although playing little or no role in the movement of membrane components from the Golgi complex to the lateral basal part of the plasmalemma.  相似文献   

8.
Colchicine administered to adult rats at a dosage of 0.5 mg/100 g of body weight effected a disorganization of the Golgi apparatus in pancreatic acinar cells. The results obtained after various periods of treatment (10 min to 6 h) showed (a) changes in all components of the Golgi complex, and (b) occurrence of large vacuoles that predominated in cytoplasmic areas outside the Golgi region. The alterations in Golgi stacks concerned elements of the proximal and distal side: (a) accumulation of transport vesicles, (b) formation of small, polymorphic secretion granules, and (c) alterations in the cytochemical localization of enzymes and reaction product after osmification. Transport vesicles accumulated and accompanied short, dilated cisternae, which lack mostly the reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase, and osmium deposits after prolonged osmification. After 4 to 6 h of treatment, accumulated transport vesicles occupied extensive cellular areas; stacked cisternae were not demonstrable in these regions. The changes on the distal Golgi side included GERL elements: condensing vacuoles were diminished; they were substituted by small, polymorphic zymogen granules, which appeared to be formed by distal Golgi cisternae and by rigid lamellae. Unusually extended coated regions covered condensing vacuoles, rigid lamellae, and polymorphic secretion granules. A cytochemical distinction between Golgi components and GERL was possible neither in controls nor after colchicine treatment. The cytochemical alterations in Golgi components were demonstrable 20-30 min following administration of colchicine; at 45 min, initial morphological changes--augmentation of transport vesicles and formation of polymorphic zymogen granules--became apparent. 20 min after administration of colchicine, conspicuous groups of large vacuoles occurred. They were located mostly in distinct fields between cisternae of the endoplasmic reticulum, and were accompanied by small osmium--reactive vesicles. Stacked cisternae were not demonstrable in these fields. Vacuoles and vesicles were devoid of reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. The results provide evidence that formation of stacked Golgi cisternae is impaired after colchicine treatment. The colchicine--induced disintegration of the Golgi complex suggests a regulatory function of microtubules in the organization of the Golgi apparatus.  相似文献   

9.
The effect of monensin and colchicine on the biogenesis of aminopeptidase N (EC 3.4.11.2), aminopeptidase A (EC 3.4.11.7), dipeptidyl peptidase IV (EC 3.4.14.5), sucrase (EC 3.2.1.48)-isomaltase (EC 3.2.1.10) and maltase-glucoamylase (EC 3.2.1.20) was studied in organ-cultured pig small-intestinal explants. On the ultrastructural level, monensin (1 microM) caused an increasingly extensive dilation and vacuolization of the Golgi complex during 4h exposure of the explants. On the molecular level, the effect of monensin was twofold. (1) The processing from the initial high-mannose-glycosylated form to the mature complex-glycosylated form was arrested. For some of the enzymes studied, intermediate stages between the high-mannose and complex forms could be seen, probably corresponding to 'trimmed' or partially complex-glycosylated polypeptides. (2) Labelled microvillar enzymes failed to reach their final destination. These findings suggest the involvement of the Golgi complex in the post-translational processing and transport of microvillar enzymes. The presence in the growth medium of colchicine (50 micrograms/ml) caused a significant inhibition of the appearance of newly synthesized enzymes in the microvillar membrane during a 3 h labelling period. Since synthesis and post-translational modification of the microvillar enzymes were largely unaffected by colchicine, the results obtained suggest that microtubules play a role in the final transport of the enzymes from the Golgi complex to the microvillar membrane.  相似文献   

10.
In the first paper of this series (Bennett et al., 1984), light-microscope radioautographic studies showed that colchicine or vinblastine inhibited intracellular migration of glycoproteins out of the Golgi region in a variety of cell types. In the present work, the effects of these drugs on migration of membrane glycoproteins have been examined at the ultrastructural level in duodenal villous columnar cells and hepatocytes. Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In duodenal villous columnar cells, 3H-fucose labeling of the apical plasma membrane was reduced by 51% after colchicine and by 67% after vinblastine treatment; but there was little change in labeling of the lateral plasma membrane. Labeling of the Golgi apparatus increased. This suggests that labeled glycoproteins destined for the apical plasma membrane were inhibited from leaving the Golgi region, while migration to the lateral plasma membrane was not impaired. In hepatocytes, labeling of the sinusoidal plasma membrane was reduced by 83% after colchicine and by 85% after vinblastine treatment. Labeling of the lateral plasma membrane also decreased, although not so dramatically. Labeling of the Golgi apparatus and neighboring secretory vesicles increased. This indicates that the drugs inhibited migration of membrane glycoproteins from the Golgi region to the various portions of the plasma membrane. Accumulation of secretory vesicles at the sinusoidal front suggests that exocytosis may also have been partially inhibited. In both cell types, microtubules almost completely disappeared after drug treatment. Microtubules may, therefore, be necessary for intracellular transport of membrane glycoproteins, although the possibility of a direct action of these drugs on Golgi or plasma membranes must also be considered.  相似文献   

11.
The effect of α-tocopherol on doxorubicin induced changes in intestinal brush border and basolateral membranes were studied in rats. Rats were treated with doxorubicin (2.5 mg/kg body wt.), intravenously, weekly for 8 weeks. α-Tocopherol (400 mg/kg body wt.) was given orally, daily for 2 months. Intestinal basolateral membrane bound ATPases and brush border membrane bound alkaline phosphatase activities were found to be decreased significantly in doxorubicin treated rats. The lipid peroxide level was found to be elevated with a significant depletion in membrane sulphydryl groups. In α-tocopherol coadministered animals, the enzyme activities were found to be restored with concomitant reduction in lipid peroxide levels and an increase in the membrane sulphydryl groups. The membrane cholesterol and phospholipid levels which were altered in doxorubicin treated animals were found to be maintained significantly. The results are discussed with reference to the effect of α-tocopherol on lipid peroxidation and membrane sulphydryl groups.  相似文献   

12.
The pathogenesis of lithocholic acid (LCA-Na)-induced cholestasis involves a rapid accumulation of cholesterol in the bile canalicular membrane. Since microtubules play an important role in the intracellular transport of many materials, including cholesterol, the present study was undertaken to assess the extent to which they participate in the development of LCA-Na-induced cholestasis. Rats were pretreated with either colchicine (0.2 mumol/100 g body wt.) or saline solution 90 min before injection with LCA-Na (12 mumol/100 g body wt.). Colchicine, although not increasing bile flow by itself, significantly reduced the cholestasis caused by LCA-Na (57-32% reduction in bile flow) without affecting its metabolism into less toxic bile acids or its distribution in blood, liver or bile. Bile canalicular membranes isolated from animals treated with a combination of colchicine and LCA-Na contained less cholesterol than those treated with LCA-Na alone. However, membranes obtained from rats treated with colchicine alone contained much less cholesterol than did controls. It was found that the total amount of cholesterol accumulated within the bile canalicular membrane following LCA-Na treatment (LCA-Na + colchicine versus colchicine alone compared with LCA-Na versus controls) was unchanged by colchicine treatment. In view of these findings it is suggested that the total amount of cholesterol present within the bile canalicular membrane determines the extent of LCA-Na-induced cholestasis, LCA-Na probably moves cholesterol to the bile canalicular membrane via a microtubule independent pathway, and microtubules are unlikely to function in the transcellular transport of LCA-Na.  相似文献   

13.
In an attempt to evaluate the effect and interaction of ethanol on endosulfan-induced hepatotoxicity in vivo to adult male rats, both, endosulfan (7.5 mg/kg body wt) and ethanol (1.5 g/kg body wt) were studied separately as well as in combination after a chronic oral exposure of 30 days. When fed separately, both the agents were found to induce microsomal mixed function oxidase (MFO) system in treated animals. A simultaneous induction in the activity of cytosolic GSH-s-transferase was found to be associated with significantly induced ascorbate-induced microsomal lipid peroxidation. Both endosulfan and ethanol showed increasing trends in the activities of reducing equivalent (NADPH)-generating enzymes in liver. The activity of hepatic alcohol dehydrogenase was, however, found to be relatively unaffected. When ethanol was administered in combination with endosulfan, the observed effects on the activities of major drug metabolizing enzymes, microsomal lipid peroxidation and NADPH generation were further pronounced. Findings demonstrated the MFO inducing capability of both endosulfan and ethanol, and showed further that chronic ethanol ingestion might potentiate the in vivo hepatotoxicity of endosulfan if administered in combination.  相似文献   

14.
Acute single dose (ip) administration of two rare earth elements like lanthanum chloride (250 mg/kg body wt) and neodymium chloride (200 mg/kg body wt) to chicks have been found to reduce the activity of certain erythrocyte membrane bound enzymes, viz. acetylcholinesterase, NADH dehydrogenase, Mg(2+)-ATPase, p-nitrophenyl phosphatase. Erythrocyte membrane bound glycosidases e.g. beta-D-glucosidase, beta-D-galactosidase and beta-D-glucuronidase were also reduced. Other components such as cholesterol and phospholipid residues were reduced but their ratio (cholesterol/phospholipid) remaining unchanged. Membrane sulfhydryl groups were also significantly inhibited by these rare earth elements.  相似文献   

15.
To determine whether certain outer membrane proteins are associated with growth of Bacteroides thetaiotaomicron on polysaccharides, we developed a procedure for separating outer membranes from inner membranes by sucrose density centrifugation. Cell extracts in 10% (wt/vol) sucrose-10 mM HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) were separated into two fractions on a two-step (37 and 70% [wt/vol]) sucrose gradient. These fractions were further resolved into outer membranes (p = 1.21 g/cm3) and inner membranes (p = 1.14 g/cm3) on sucrose gradients. About 20 to 26% of the total 3-hydroxy fatty acids from lipopolysaccharide and 2 to 3% of the total cellular succinate dehydrogenase activity were recovered in the outer membrane preparation. The inner membrane preparation contained 22 to 49% of the total succinate dehydrogenase activity and 2 to 3% of the total 3-hydroxy fatty acids from lipopolysaccharide. Outer membranes contained a lower concentration of protein (0.34 mg/mg [dry weight]) than did the inner membranes (0.68 mg/mg [dry weight]). Molecular weights of inner membrane polypeptides ranged from 11,000 to 133,000. The most prominent polypeptides had molecular weights ranging from 11,000 to 26,000. In contrast, the molecular weights of outer membrane polypeptides ranged from 17,000 to 117,000. The most prominent polypeptides had molecular weights ranging from 42,000 to 117,000. There were several polypeptides in the outer membranes of bacteria grown on polysaccharides (chondroitin sulfate, arabinogalactan, or polygalacturonic acid) which were not detected or were not as prominent in outer membranes of bacteria grown on monosaccharide components of these polysaccharides.  相似文献   

16.
A single intraperitoneal injection of DL-methionine (500 mg/kg body wt.) to adult male Wistar rats was shown to significantly induce all the components of the hepatic microsomal mixed function oxidase system such as NADPH cytochrome C reductase activity, cytochromes P-450 and b5, as well as activities of drug metabolizing enzymes such as aminopyrine demethylase and uridine 5′ -diphosphate-glucuronosyltransferase. Combined administration of nicotinamide (250 mg/kg body wt.) and DL-methionine (500 mg/kg body wt.) was shown to bring about an additional increase (25-30%) in the activities of these enzymes as compared to their induction on independent administration of the two endobiotics. In rats bearing Yoshida sarcoma (ascites) tumour as well as in normal rats injected with serum from tumour bearing animals, the decreased activities of hepatic mixed function oxidases could be restored to their normal levels by administration of DL-methionine (500 mg/kg body wt.) to these rats. Whereas actinomycin D (1 mg/kg body wt.) had no effect on the increased incorporation of [14C] labelled leucine into microsomal proteins following administration of nicotinamide, the enhanced incorporation of the label following DL-methionine administration was completely inhibited by the same dose of actinomycin D. Administration of cycloheximide (0·5 mg/kg body wt.) to rats could completely inhibit the increased incorporation of [14C] leucine into hepatic microsomal proteins following independent administration of nicotinamide and DL-methionine. Similar inhibitory pattern with actinomycin D and cycloheximide was also demonstrated in case of induction of NADPH cytochromeC reductase activity by both these endobiotics.  相似文献   

17.

Background

Chemotheraputic drugs often target the microtubule cytoskeleton as a means to disrupt cancer cell mitosis and proliferation. Anti-microtubule drugs inhibit microtubule dynamics, thereby triggering apoptosis when dividing cells activate the mitotic checkpoint. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs); however, we lack a comprehensive understanding about how anti-microtubule agents functionally interact with MAPs. In this report, we test the hypothesis that the cellular levels of microtubule depolymerases, in this case kinesin-13 s, modulate the effectiveness of the microtubule disrupting drug colchicine.

Methodology/Principal Findings

We used a combination of RNA interference (RNAi), high-throughput microscopy, and time-lapse video microscopy in Drosophila S2 cells to identify a specific MAP, kinesin-like protein 10A (KLP10A), that contributes to the efficacy of the anti-microtubule drug colchicine. KLP10A is an essential microtubule depolymerase throughout the cell cycle. We find that depletion of KLP10A in S2 cells confers resistance to colchicine-induced microtubule depolymerization to a much greater extent than depletion of several other destabilizing MAPs. Using image-based assays, we determined that control cells retained 58% (±2%SEM) of microtubule polymer when after treatment with 2 µM colchicine for 1 hour, while cells depleted of KLP10A by RNAi retained 74% (±1%SEM). Likewise, overexpression of KLP10A-GFP results in increased susceptibility to microtubule depolymerization by colchicine.

Conclusions/Significance

Our results demonstrate that the efficacy of microtubule destabilization by a pharmacological agent is dependent upon the cellular expression of a microtubule depolymerase. These findings suggest that expression levels of Kif2A, the human kinesin-13 family member, may be an attractive biomarker to assess the effectiveness of anti-microtubule chemotherapies. Knowledge of how MAP expression levels affect the action of anti-microtubule drugs may prove useful for evaluating possible modes of cancer treatment.  相似文献   

18.
Effect of chronic cadmium (Cd) exposure and the influence of diethyldithiocarbamate (DDC) on Cd absorption was studied on the brain of young male Wistar rats. A significant amount of Cd accumulated in cerebral cortices of rats after 4 weeks of Cd (6 mg/kg body wt) exposure (through gastric intubation). The biological activity of calmodulin (CaM) decreased significantly (p less than 0.001) in the cerebral cortices of these animals in comparison to the control group. 3'-5' Phosphodiesterase and synaptic membrane Ca(2+)-Mg(2+) ATPase were also significantly affected (p less than 0.01 and p less than 0.001 respectively). However, Cd treatment did not alter synaptic membrane adenylate cyclase activity and DDC (9.2 mg/kg body wt, intraperitoneal) treatment along with Cd (6 mg/kg body wt) enhanced Cd accumulation in cerebral cortices of treated animals resulting in an increased inhibition of CaM and CaM dependent enzymes. These data suggest that Cd may be acting via binding to CaM and uncoupling it from its normal cellular control of calcium.  相似文献   

19.
Selenium (Se)-deficient mice were labelled in vivo with single pulses of [75Se]selenite, and the intrahepatic distribution of the trace element was studied by subcellular fractionation. At 1 h after intraperitoneal injection of 3.3 or 10 micrograms of Se/kg body weight, 15% of the respective doses were found in the liver. Accumulation in the subcellular fractions followed the order: Golgi vesicular much greater than lysosomal greater than cytosolic = microsomal greater than mitochondrial, peroxisomal, nuclear and plasma-membrane fraction. At a dose of 3.3 micrograms/kg, more than 90% of the hepatic Se was protein-bound. When cross-contamination was accounted for, the following specific Se contents of the subcellular compartments were extrapolated: Golgi apparatus, 7.50 pmol/mg; cytosol, 0.90 pmol/mg; endoplasmic reticulum, 0.80 pmol/mg; mitochondria, 0.49 pmol/mg; nuclei, lysosomes, peroxisomes and plasma membrane, less than 0.4 pmol/mg. At 10 micrograms/kg, a roughly 2-3-fold increase in Se content of all fractions was found without major changes in the intrahepatic distribution pattern. An extraordinary rise in the cytosolic fraction was due to an apparently non-protein-bound Se pool. At 24 h after dosing, total hepatic Se had decreased to 6% of the initial dose and had become predominantly protein-bound. The 60% decrease in hepatic Se was reflected in a similar fall in the subcellular levels of the trace element. The Golgi apparatus still had the highest specific Se content, although accumulation was 5 times less than that after 1 h. The cytosolic pool accounted for 50% of the hepatic Se at both labelling times. After 1 h the Golgi apparatus was, with 19%, the second largest intrahepatic pool, followed by the endoplasmic reticulum with 16%. The high affinity and fast response of the Golgi apparatus to Se supplementation of deficient mice is interpreted in terms of a predominant function of this cell compartment in the processing and the export of Se-proteins from the liver.  相似文献   

20.
Alzheimer disease (AD) is characterized by dementia that begins as mild short term memory deficit and culminates in total loss of cognitive and executive functions. The present study was conducted to evaluate the neuroprotective potential of Bacopa monnieri (BM), an Indian traditional medicinal plant effective against cognitive impairment, in colchicine-induced dementia. Intracerebroventricular administration of colchicine (15?μg/5?μl) induced cognitive impairment in rats as assessed by elevated plus maze. This was accompanied by a significant increase in oxidative stress in term of enhanced levels of lipid peroxidation and protein carbonyls. Concomitantly, decrease in activity of antioxidant enzymes was observed in colchicine treated animals. BM (50?mg/kg body weight) supplementation reversed memory impairment observed in the colchicine treated rats. BM administration attenuated oxidative damage, as evident by decreased LPO and protein carbonyl levels and restoration in activities of the antioxidant enzymes. The activity of membrane bound enzymes (Na(+)K(+) ATPase and AChE) was altered in colchicine treated brain regions and BM supplementation was able to restore the activity of enzymes to comparable values observed in controls. The results suggest therapeutic potential of BM in the treatment of AD associated cognitive decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号