首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most modern cut-flower cultivars, including those of carnation(Dianthus caryophyllus), lack distinct fragrance.Carnationcv. Eilat flowers produce and emit various fragrance compounds, includingbenzoic acid derivatives and sesquiterpenes, but not monoterpenes. Based onGC-MS analysis, benzoic acid, benzyl benzoate, phenylethyl benzoate, methylbenzoate, cis-3-hexenyl benzoate and -caryophylleneare the major fragrance compounds, representing ca. 60% of the total volatilesgenerated by these flowers. The level of these compounds increases dramaticallyduring petal development. To evaluate the possibility of producing monoterpenesin carnation cv. Eilat, we generated transgenic plants expressing the linaloolsynthase gene from Clarkia breweri under the regulation ofthe CaMV 35S constitutive promoter. The product of this gene catalyzes theproduction of the monoterpene linalool from geranyl diphosphate. HeadspaceGC-MSanalysis revealed that leaves and flowers of transgenic, but not controlplants,emit linalool and its derivatives, cis- andtrans-linalool oxide. GC-MS analysis of petal extractrevealed the accumulation of trans-linalool oxide but notlinalool. The emission of linalool by the transgenic flowers did not lead todetectable changes in flower scent for human olfaction.  相似文献   

2.
Magnolia kobus was examined at 32 sites in Japan (109 female-stage flowers from 52 plants) by GC-MS. Major chemical compounds (a total of 36 chemicals) emitted from the flowers were: linalool (and its oxides), limonene, cis- and trans-β-Ocimene, benzaldehyde, benzyl alcohol, benzyl cyanide, and 2-aminobenzaldehyde. Linalool and its oxides were the most abundant components of floral scents in 21 individuals. The rate at which chemical volatiles were emitted ranged from 0.002 to 0.929 μg/flower/hour (average 0.211). High quantitative and qualitative variation in floral scent chemistry among individuals was found throughout the range of M. kobus, especially in central Honshu. The high variability in floral scent chemistry may be due to the importance of visual cues in the reproductive biology of M. kobus which flowers in early spring, resulting in decreased selection for specific floral scent profiles. Alternatively, different scent compounds or chemical profiles may be equally effective in attracting pollinators. Received 25 June 2001/ Accepted in revised form 25 August 2001  相似文献   

3.
The flowers of Canada thistle, Cirsium arvense (L.), attract a wide range of insects, including pollinators and herbivorous species. This attraction is primarily mediated by floral odor, which offers potential for developing generic insect attractants based on odor. In this study, we have analyzed the chemical composition of the volatiles produced by Canada thistle flowers. Nineteen floral compounds were identified in the headspace, including phenylacetaldehyde (55%), methyl salicylate (14%), dimethyl salicylate (8%), pyranoid linalool oxide (4.5%), and benzaldehyde (3.5%). Other minor compounds include benzyl alcohol, methylbenzoate, linalool, phenylethyl alcohol, furanoid linalool oxide, p-anisaldehyde, 2,6-dimethyl-1,3,5,7-octatetraene, benzylacetate, benzyl tiglate, (E,E)-alpha-farnesene, benzyl benzoate, isopropyl myristate, and 2-phenylethyl ester benzoic acid. The relative attractiveness of various doses of the main floral volatile compound phenylacetaldehyde (i.e., 10, 100, 200, and 400 mg) was tested for insect attraction. Both the total catch and the biodiversity of insect species trapped increased as the loading of phenylacetaldehyde increased. Volatiles were chosen from the odors from the flowers of Canada thistle and formulated and tested in the field. An 11-component blend was the most attractive of several floral blends tested. These findings indicate that chemical components of flower odors of Canada thistle can serve as a generic insect attractant for monitoring of invasive pest species.  相似文献   

4.
Aroma volatiles produced by Ceratocystis fimbriata on a defined liquid synthetic medium with and without the addition of leucine were identified by gas chromatography–mass spectrometry and quantified by gas chromatography-flame ionisation detection in the liquid medium as well as in the headspace. Volatiles were extracted from the liquid by simultaneous steam distillation–solvent extraction. Ceratocystis fimbriata produced a complex set of volatile intermediary metabolites, of which ethanol was the dominant compound (92–95% of total volatiles). Low molecular weight esters, alcohols, aldehydes, ketones, alkanes, and carboxylic acids were identified in the liquid broth. Alcohols and esters were the most abundant aroma volatiles. Leucine addition effected further growth and higher volatiles production. In the headspace, ethanol and ethyl acetate accounted for 92% of total volatiles over the synthetic medium and 89% when leucine was added. Aroma perception (fruity and banana) correlated closely with liquid and headspace total volatiles.  相似文献   

5.
The control of rhythmic emission of floral volatiles emitted from Rosa damascena semperflorens cv. Quatre Saisons throughout floral development under various light regimes was studied. 2-Phenylethanol was the major volatile emitted in addition to monoterpenols, oxidised monoterpenols, monoterpenes and aromatic compounds. All detected volatiles were emitted rhythmically, with maximum peaks coinciding 8–10 h into a 12-h photoperiod. For some compounds a secondary, nocturnal peak was apparent. The primary and secondary maxima both occurred at approximately 24-h intervals. Rhythms appeared to be regulated endogenously: rhythmic emission continued upon exposure to continuous light or continuous darkness, and a phase shift in emission was induced upon inversion of the photoperiod. Additionally, emission continued after flower excision. A similar profile of free volatiles was stored within the floral tissue, together with glycosidic forms of 2-phenylethanol (>99% -d-glucoside), benzyl alcohol, citronellol and geraniol. Regression analysis indicated a significant decrease in glycosylated 2-phenylethanol through the photoperiod. These results suggest that glycosylated volatiles stored within petals may be a source of rhythmically emitted volatiles.Abbreviations CD Continuous darkness - CL Continuous light - 2-PE 2-Phenylethanol - 2-PEG 2-Phenylethyl -d-glucopyranoside  相似文献   

6.
Röse US  Tumlinson JH 《Planta》2004,218(5):824-832
Feeding of Helicoverpa zea larvae on cotton (Gossypium hirsutum L.) flower buds (squares) for 24 or 48 h induced the release of a number of terpenes [(E)--ocimene, linalool, (E)--farnesene, (E,E)--farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene], isomeric hexenyl butyrates, 2-methylbutyrates, indole and (Z)-3-hexenyl acetate. These compounds are not released in significant amounts from undamaged squares and freshly damaged squares. The release of inducible compounds was not limited to the damaged squares themselves. The compounds were also released systemically from the upper undamaged leaves of the same plant after 72 h. However, the composition of the blend of systemically released volatiles differed from the blend released by damaged squares. The compounds that were systemically released from undamaged leaves in response to feeding on the squares were (Z)-3-hexenyl acetate, (E)--ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--farnesene, (E,E)--farnesene, and indole. This study shows that insect damage inflicted to the reproductive parts of a plant causes a systemic emission of volatiles from its vegetative parts.  相似文献   

7.
Solitary bees (Halictus sp.) were found to be the effective pollinators ofCephalanthera longifolia. In the same foraging flight the bees also visit flowers ofCistus salviifolius which has a similar colour pattern.Cephalanthera offers no reward to its pollinators, but orange papillae on its labellum successfully imitate pollen ofCistus. AsCephalanthera also attracts pollinators in the absence ofCistus, this is regarded as facultative floral mimicry.  相似文献   

8.
9.
The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.  相似文献   

10.
In order to understand the biological significance of flower odour for attraction of mosquitoes, electrophysiological responses to headspace flower odour samples of Silene otites (L.) Wibel were investigated on Culex pipiens pipiens biotype molestus Forskal 1775 and Aedes aegypti L. using coupled gas chromatographic-electroantennographic detection (GC-EAD). No remarkable differences in antennal responses to the odour compounds have been found between these two mosquito species. Further, the behavioural attractiveness of the electrophysiologically active compounds, singly or as multiple odour mixtures, was evaluated with bioassay experiments with C. pipiens molestus. In bioassays, C. pipiens responded to 14 electrophysiologically active compounds in different magnitudes (65–20%) and acetophenone, linalool oxide (pyranoid), phenyl acetaldehyde and phenylethyl alcohol were found as more attractive in comparison to the least attractive compound, hexanol. In two-stimulus choice test, mosquitoes were significantly more attracted to the mixture of the four most attractive compounds compared to the mixture of all 14 compounds. The results of present study confirm that floral odours are attractive cues for mosquitoes.  相似文献   

11.
Headspace composition, collected from intact cabbage plants and cabbage plants infested with eitherPieris brassicae L. orP. rapae L. (Lepidoptera: Pieridae) first instar larvae, was determined by GC-MS. Twenty-one volatiles were identified in the headspace of intact plants. Twenty-two volatiles were identified in the headspace of plants infested byP. brassicae larvae, 2 of which, Z-3-hexenyl butyrate and Z-3-hexenyl isovalerate, were not detected in the headspace of either intact orP. rapae damaged plants. In the headspace of the latter, 21 compounds were identified, all of which which were also produced by intact plants. No significant quantitative differences were found between headspace composition of the plants damaged by one or the other caterpillar species. Major differences between intact and caterpillar-damaged plants in contribution to the headspace profile were revealed for hexyl acetate, Z-3-hexenyl acetate, myrcene, sabinene and 1,8-cineole. The larval endoparasitoidCotesia glomerata L. was attracted by the volatiles emanating fromB. oleracea damaged byP. brassicae first instar larvae.C. rubecula L., a specialized larval endoparasitoids ofP. rapae, was attracted by the volatiles released from theB. oleracea-P. rapae plant-host complex. This shows that cabbage plants kept under the conditions of headspace collection produce attractive volatiles for both parasitoids.  相似文献   

12.
The flowers of many plants emit volatile compounds as a means of attracting pollinators. We have previously shown that the strong, sweet fragrance of Clarkia breweri (Onagraceae), an annual plant native to California, consists of approximately 8 to 12 volatile compounds[mdash]three monoterpenes and nine benzoate derivatives (R.A. Raguso and E. Pichersky [1994] Plant Syst Evol [in press]). Here we report that the monoterpene alcohol linalool is synthesized and emitted mostly by petals but to a lesser extent also by the pistil and stamens. Two linalool oxides are produced and emitted almost exclusively by the pistil. These three monoterpenes are first discernible in mature unopened buds, and their tissue levels are highest during the first 2 to 3 d after anthesis. Levels of emission by the different floral parts throughout the life span of the flower were correlated with levels of these monoterpenes in the respective tissues, suggesting that these monoterpenes are emitted soon after their synthesis. Activity of linalool synthase, an enzyme that converts the ubiquitous C10 isoprenoid intermediate geranyl pyrophosphate to linalool, was highest in petals, the organ that emits most of the linalool. However, linalool synthase activity on a fresh weight basis was highest in stigma and style (i.e. the pistil). Most of the linalool produced in the pistil is apparently converted into linalool oxides. Lower levels (0.1%) of monoterpene emission and linalool synthase activity are found in the stigma of Clarkia concinna, a nonscented relative of C. breweri, suggesting that monoterpenes may have other functions in the flower in addition to attracting pollinators.  相似文献   

13.
Huber FK  Kaiser R  Sauter W  Schiestl FP 《Oecologia》2005,142(4):564-575
We investigated scent composition and pollinator attraction in two closely related orchids, Gymnadenia conopsea (L.) R.Br. s.l. and Gymnadenia odoratissima (L.) Rich. in four populations during the day and night. We collected pollinators of both species using hand nets and sampled floral odour by headspace sorption. We analysed the samples by gas chromatography with mass spectrometry to identify compounds and with electroantennographic detection to identify compounds with physiological activity in pollinators. In order to evaluate the attractiveness of the physiologically active compounds, we carried out trapping experiments in the field with single active odour substances and mixtures thereof. By collecting insects from flowers, we caught eight pollinators of G. conopsea, which were members of four Lepidoptera families, and 37 pollinators of G. odoratissima, from five Lepidopteran families. There was no overlap in pollinator species caught from the two orchids using nets. In the scent analyses, we identified 45 volatiles in G. conopsea of which three (benzyl acetate, eugenol, benzyl benzoate) were physiologically active. In G. odoratissima, 44 volatiles were identified, of which seven were physiologically active (benzaldehyde, phenylacetaldehyde, benzyl acetate, 1-phenyl-2,3-butandione, phenylethyl acetate, eugenol, and one unknown compound). In field bioassays using a mixture of the active G. odoratissima compounds and phenylacetaldehyde alone we caught a total of 25 moths, some of which carried Gymnadenia pollinia. A blend of the active G. conopsea volatiles placed in the G. odoratissima population did not attract any pollinators. The two orchids emitted different odour bouquets during the day and night, but G. odoratissima showed greater temporal differences in odour composition, with phenylacetaldehyde showing a significant increase during the night. The species differed considerably in floral odour emission and this differentiation was stronger in the active than non-active compounds. This differentiation of the two species, especially in the emission of active compounds, appears to have evolved under selection for attraction of different suites of Lepidopteran pollinators.  相似文献   

14.
The importance of ants for pollination in the dioeciousBorderea pyrenaica (Dioscoreaceae), a Tertiary palaeoendemic plant of the Pyrenees (NE Iberian Peninsula) was studied. The frequency of different visitors (ants, lady beetles, andDiptera) to staminate and pistillate flowers was quantified, and their effectiveness as pollinators was examined by means of fruit and seed set in selective experimental exclusions. Although ants were less abundant on flowers than other visitors, they were the most effective pollinators. Some qualitative factors of this mutualistic ant-plant interaction may account for their effectiveness: the small size of the ants, their high visitation rate to pistillate flowers, and the lack of reduction in viability of the pollen transported on the integument. In addition, the sedentary nature of ants assures their presence during the flowering period. The most abundant floral visitors ofB. pyrenaica were therefore not the most effective pollinators.  相似文献   

15.
Extensive research has focused on the concentration of aglyconeswithin brown boronia (Boronia megastigma) flowers, however emissionof volatiles into the headspace above these flowers is not welldocumented. Using solid-phase microextraction (SPME) to trapvolatiles and GCMS analysis, we observed 23 volatiles in theheadspace above buds and flowers throughout flower maturation,above dissected floral organs and above whole plants held for36 h under either continuous light, continuous dark or 12 hlight:12 h dark:12 h light treatments. Fully-opened flowersemitted the most complex mixture of volatiles and in the greatestquantity, with a rapid decline in senescent flowers. Caryophyllene,humulene and bicyclogermacrene declined as flower buds matured;ß-ionone increased. From the individual floral organs,emission from the petaline anthers comprised 38% of total emissionsfrom the (calculated) ‘whole flower’, with 27% contributedby the petals and 10.5% by the stigma. Monoterpenes dominatedthe headspace from the calyx; dodecyl acetate, methyl jasmonateand (Z)-n-heptadec-8-ene were relatively predominant in emissionsfrom the androecium. ß-Ionone, the major floral volatilein brown boronia, dominated volatiles emitted from the stigma(87%). However, the relatively tiny petaline anthers, activein pollen production and high in carotenoids, contributed thegreatest overall amount of ß-ionone to emission fromthe whole flower. There were three different patterns in emissionof volatiles from plants in response to different light conditions:(1) emission patterns identical irrespective of light environment,with maximum emission in the ‘endogenous’ dark period,i.e. when the plant would normally have been in the dark (-pinene);(2) similar emission in all treatments, with an increase anddecline over a period of 26 h (5-acetoxy linalool, cyclic ß-ionone,dodecyl acetate and (Z)-n-heptadec-8-ene); and (3) emissionin all treatments but enhanced in the dark, with a 27.5 h periodin some cases (cyclic ß-ionone endoperoxide, dihydroß-ionone, ß-ionone, and ‘total volatiles’).Preliminary evidence is presented for endogenous control ofemission of a number of volatiles such as -pinene, with perhapsdiurnal control of others such as ß-ionone. Copyright2000 Annals of Botany Company Boronia megastigma, brown boronia, SPME, headspace, floral volatiles, ß-ionone  相似文献   

16.
Vegetative and floral features ofCajophora coronata (Loasaceae) suggest adaptations to pollination by rodents: (1) mammal guard represented by a covering of stinging hairs; (2) geoflory; (3) white corolla; (4) open flowers with copious low concentration nectar; (5) abundant pollen; (6) maximum pollen and nectar presentation in the afternoon hours and in the night. Palynological analysis revealed pollen loads ofC. coronata on the nostrils and whiskers of captured rodents (Graomys griseoflavus, fam.Muridae). Pollen and anther remains were also found in faeces sampled in the surroundings. Additional evidence includes rodent footprints obtained by placing smoked plates beneath the flowers, which revealed flower visitation during the night. These observations are to our knowledge the first evidence of flower visitation by rodents in South America and the first in the New World outside the range of flower bats and bat flowers.  相似文献   

17.
The exines of pollen grains ofHibbertia stricta (DC.)R. Br. exF. Muell. (Sect.Pleurandra) wear an oily, yellow pollen coat that stains positively for lipids. The pollen is collected by asocial bees, exclusively. The most common floral foragers are members of the genusLasioglossum (subgenusChilalictus;Halictidae) and they harvest pollen via thoracic vibration. As these bees cling to the inflated anthers their pollen smeared bodies come in contact with either of the two wet, nonpapillate stigmas. The stigmas respond positively to cytochemical tests for the presence of esterase immediately following expansion of the corolla, indicating the effective pollination period. The foraging patterns of the bees are narrowly to broadly polylectic. AsH. stricta flowers are nectarless, it is not surprising that bees bearing mixed pollen loads always carry the pollen of at least one nectariferous, coblooming plant. The pollination biology ofH. stricta is compared with otherHibbertia spp. and with pollen flowers in general.  相似文献   

18.
Floral scent was collected by headspace methods from intact flowers, petals, and stamens of four species ofPyrolaceae. The scent samples were analyzed by coupled gas chromatography-mass spectrometry (GC-MS). The floral scent inPyrola spp. is differentiated into a characteristic petal scent—phenyl propanoids and a characteristic stamen scent—methoxy benzenes. InMoneses the scent is characterized by isoprenoids and benzenoids, with a larger proportion of benzenoids in the stamens compared to the petals. Specific anther scents may promote foraging efficiency in buzz-pollinated species and enhance flower fidelity. Variation in floral scent composition is consistent with the taxonomic relationships among the genera and species examined.  相似文献   

19.
Prunus mume is the only species of Prunus known to produce a strong floral fragrance. Most interspecific hybrids between P. mume and other species of Prunus lack the fragrance. The analysis of variations in emitted and endogenous compounds among genetically close cultivars is a powerful approach for revealing the mechanisms underlying floral scent emission. Compounds emitted by flowers from five cultivars were collected using the static headspace method, and endogenous compounds in the flowers were extracted with ethyl acetate. Samples were analysed quantitatively and qualitatively using gas chromatography-mass spectrometry. The result showed that benzenoids were the dominant compounds, of which benzyl acetate was the principal component contributing to the floral scent of P. mume. A clustering analysis of the floral volatiles from the different cultivars suggested that the scent traits of hybrids are related to the taxonomic relationship between their parents. The correlations between the amount of the endogenous and emitted compounds revealed that benzyl acetate had a stronger tendency to be volatile than the other compounds and the volatilisation rate of volatile compounds varied greatly among different cultivars. The importance of the biosynthetic pathway and the function of benzaldehyde are discussed.  相似文献   

20.
In order to investigate the difference in their characteristic floral scents between Prunus mume Siebold & Zucc. and the related Prunus species, their headspace volatiles and endogenous extraction were analyzed by gas chromatography–mass spectrometry. The efficiency of substrate utilization of the flowers was studied by incubating them with different alcohol substrates. Our results indicated that benzyl acetate is a dominant compound influencing the characteristic floral scent of P. mume. An alcohol substrate concentration of 4?mmol?L?1 and a reaction time of 2?h were constituted the reaction condition for catalysis of exogenous alcohol substrates by the flowers. Under these conditions, Prunus sibirica exhibited the highest utilization efficiency for benzyl alcohol substrate while the utilization efficiency of Prunus persica was the lowest. Comparative analysis of several alcohol substrates indicated that the flowers of the tested species had selective specificity for benzyl alcohol substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号