首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese toxicity, which involves a broad array of physiological responses, has been identified as an important factor limiting plant growth on acid soils. In the experiments reported here, we examined the toxic effects of Mn on chlorophyll content, photosynthesis and respiration in two cultivars (Norquay and Columbus) of Triticum aestivum (wheat) which differ in tolerance of Mn. When grown over a range of concentrations of Mn (0–1 000 μ M ), the Mn-tolerant cultivar maintained higher rates of photosynthesis and respiration, and higher concentrations of chlorophyll a and chlorophyll b , than did the Mn-sensitive cultivar, despite greater accumulations of Mn in leaf tissues. After 5 days growth with 1 000 μ M Mn in solution, the photosynthetic rate fell to 25% of control in the sensitive cultivar and to only 75% of control in the tolerant cultivar. The concentration of chlorophyll a fell to 50% of control in the sensitive cultivar, but did not differ from control in the tolerant cultivar. Greater effects were seen on concentrations of chlorophyll b . which fell to 35% and 55% of control in the sensitive and tolerant cultivars, respectively. Rates of photosynthesis decreased in both cultivars as concentrations of chlorophyll decreased; however, the photosynthetic rate per unit chlorophyll remained constant or increased in the tolerant cultivar and decreased in the sensitive cultivar as concentrations of Mn in solution increased. Thus, in the sensitive cv. Columbus, Mn seemed to have a toxic effect on both chlorophyll content and photosynthesis per unit chlorophyll. In the tolerant cv. Norquay, the only clear effect of Mn was a reduction in chlorophyll content, although direct inhibition of photosynthesis could not be discounted.  相似文献   

2.
Cuttings of Vitis vinifera (cultivar Combier) were exposed to seven different zinc (Zn) concentrations (control, 3.5, 7.0, 14.0, 21.0, 28.0, and 35.0 mM) to investigate growth and physiological responses to excess amount of zinc (Zn). The apparent plant growth, as indicated by daily height growth, daily stem diameter variation, and biomass accumulation, was increased by 3.5–7.0 mM surplus Zn addition. Coupled with the increase in plant growth, grape retained low level of leaf Zn concentration, and also retained high level of leaf iron concentration due to increasing translocation of iron (Fe) from root and shoots to leaves. Leaf N and K were increased or found at a constant high level, paralleling with low oxidative pressure and enhanced catalase (CAT) activity. Moreover, plant growth was depressed under high Zn levels (>14.0 mM). Generally excess Zn was stored in the non-sensitive plant parts (roots and shoots), and it caused significant reductions of P, Fe, Mn, Cu in different parts of plant. At the same time, excess Zn caused a pronounced increase in abscisic acid concentration. Our results showed that cultivar Combier is a highly Zn-tolerant grape cultivar and could be used as pioneer plants in metalliferous site and in acidic soil of the tropical and subtropical area.  相似文献   

3.
Little is known about the spatial distribution of excess manganese (Mn) in the leaves of tolerant plants. Recently, the first such study of a Mn hyperaccumulator showed that the highest localized Mn concentrations occur in the photosynthetic tissue. This is in contrast to reports based on localization of foliar accumulation of other heavy metals. Here, four tree species, Gossia bidwillii, Virotia neurophylla, Macadamia integrifolia and Macadamia tetraphylla, which hyperaccumulate or strongly accumulate Mn, were studied. Cross-sectional foliar Mn localization was carried out in situ using proton-induced X-ray emission/energy dispersive X-ray analysis (PIXE/EDAX). All four species contained photosynthetic tissues with multiple palisade layers. These were shown to be the primary sequestration sites for Mn. Mn was not detected in the epidermal tissues. The findings of this study demonstrate a concurrence of three traits in four tree species, that is, accumulation of excess Mn in the leaves, its primary sequestration in the photosynthetic tissues, and multiple-layer palisade mesophyll.  相似文献   

4.
不同光强下高锰对黄瓜光合作用特性的影响   总被引:10,自引:2,他引:10  
采用营养液培养的方法,研究了不同光强下高锰对黄瓜植株生长、叶绿素含量、叶绿素荧光参数和光合作用的影响.结果表明,高锰处理抑制了黄瓜植株的生长,与弱光处理相比强光下抑制幅度更加显著.强光下,高锰处理显著降低叶绿素含量,但降低光强却增加其含量.强光下,高锰处理显著降低原初光能转换效率(Fv/Fm)、光合电子传递量子效率(ΦPSII)和光化学猝灭系数(qP);弱光下,高锰处理对Fv/FmqP无显著影响.高锰处理使净光合速率(Pn)和气孔导度(Gs)下降.尤其是在强光下下降幅度更大.高锰处理使细胞间CO2浓度(Ci)在强光下升高,而在弱光下则下降.与Ci相反,高锰处理使气孔限制值(Ls)在强光下下降,而在弱光下上升.因此,强光下高锰胁迫使净光合速率下降可能是由非气孔限制引起的,而弱光下高锰处理使净光合速率下降可能是由气孔因子限制引起的.  相似文献   

5.
镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响   总被引:21,自引:0,他引:21  
孙建云  沈振国 《应用生态学报》2007,18(11):2605-2610
以2个耐镉(Cd)性不同的甘蓝品种为材料,研究了不同Cd浓度(0、20、50、100μmol.L-1)对甘蓝植株生长、叶片光合特性和养分吸收的影响.结果表明:Cd敏感品种在低浓度Cd(20μmol.L-1)处理下生长受到明显抑制,叶片净光合速率(Pn)、气孔导度(Gs)、PSⅡ光化学效率(Fv/Fm)、PSⅡ光合电子传递量子效率(ΦPSⅡ)及地上部、根系干质量显著降低;Cd耐性品种在高浓度Cd(50和100μmol.L-1)处理下生长和光合特性受到显著影响;Cd胁迫降低了甘蓝叶片叶绿素a和b含量,尤其对叶绿素a的影响较大,进而抑制了叶片光合能力.Cd胁迫显著降低了植株对Mn的吸收,抑制了Mg和Fe从根部向地上部的转运,且Cd敏感品种受抑制幅度更大;Cd胁迫促进了Cd耐性品种对P和S的吸收,而Cd敏感品种相反.因此,Cd胁迫下甘蓝敏感品种叶片Mn、Fe、Mg、S和P含量的降低是影响其叶片光合作用,进而抑制植株生长的重要生理原因.  相似文献   

6.
Aluminum (Al) and manganese (Mn) toxicity commonly coexists in acid soil, so the crop cultivars suitable for planting in acid soil should show high tolerance to both elements simultaneously. However, it is still not clear if the toxicity of Mn and Al on plant growth is antagonistic or synergistic, and the plants with Al tolerance are also tolerant to Mn toxicity. In this study, three barley genotypes (one Tibetan wild and two cultivated), differing in Al tolerance, were characterized for growth and physiological responses to Al or Mn toxicity as well as the combined treatment of the two toxic elements. Interestingly, it has been found that the combined treatment of both metals was less affected in comparison with Al or Mn treatment alone, in terms of plant growth, Al or Mn concentration in plant tissues, and photosynthetic parameters, indicating antagonistic interaction of Al and Mn for their effect on plant growth and physiological traits. The results also showed that there was a dramatic difference among barley genotypes in Mn toxicity tolerance and XZ16 showed much higher tolerance than other two genotypes. High Mn tolerance is mainly described to less Mn uptake and lower Mn concentration in plants, and Mn tolerance is independent of Al tolerance.  相似文献   

7.
尹文彦  姚银安 《生物学杂志》2012,29(1):51-53,36
以2个葡萄品种(金手指、康拜尔)为材料,采用温室沙培实验,研究不同浓度Mn处理对葡萄根中离子吸收及抗氧化酶活性的影响.结果表明,随着Mn2+浓度的增大,葡萄根中元素含量呈现不同的变化,总体上看Ca和Mg的含量降低,Mn、Cu和Zn的含量增加,Fe含量则随锰处理浓度增加呈先下降后略有升高的趋势.在抗氧化系统中POD活性随 Mn浓度的升高而逐渐降低,而CAT和APX酶活性呈先升高后降低的趋势,SOD活性变化不大,说明保护酶系统形成了一定的适应高锰胁迫的机制,这些抗氧化酶活性的增强能够提高葡萄适应和抵抗重金属胁迫的能力.  相似文献   

8.
Excessive manganese (Mn) supply induced the formation of brown spots on leaves as typical Mn toxicity symptoms in cowpea ( Vigna unguiculata L. Walp.) grown in hydroponics. Differences in Mn resistance between cv. TVu 91 (Mn-sensitive) and cv. TVu 1987 (Mn-tolerant) expressed in the density of brown spots in older leaves were due to higher Mn tissue tolerance. Apoplastic water-soluble peroxidase (POD) in the apoplastic washing fluid (AWF) was enhanced by increasing Mn leaf content and generally significantly higher in leaves of cv. TVu 91 than in cv. TVu 1987. Electrophoresis of AWF revealed the presence of several water-soluble POD isoenzymes. At toxic Mn supply, the activities of these and additional POD isoenzymes increased more in the Mn-sensitive cultivar. Levels of ascorbic acid in the apoplast and cytoplasm of the Mn-sensitive cv. TVu 91 decreased with increasing leaf Mn contents, whereas Mn-tolerant cv. TVu 1987 was not affected. Mn treatment lead to a stimulation of the enzymes of the ascorbic acid regeneration system (monodehydroascorbic acid reductase and glutathione reductase) in both cultivars, but the activation of glutathione reductase was clearly more enhanced in the Mn-tolerant cultivar TVu 1987. The results provide circumstantial evidence that apoplastic ascorbate and peroxidases are involved in the expression of Mn toxicity and genotypic Mn tolerance.  相似文献   

9.
The apoplast is considered the leaf compartment decisive for manganese (Mn) toxicity and tolerance in cowpea (Vigna unguiculata). Particularly apoplastic peroxidases (PODs) were proposed to be key enzymes in Mn toxicity-induced processes. The presented work focuses on the characterization of the role of hydrogen peroxide (H2O2)-producing (NADH peroxidase) and H2O2-consuming peroxidase (guaiacol POD) in the apoplastic washing fluid (AWF) of leaves for early stages of Mn toxicity and genotypic differences in Mn tolerance of cowpea. Leaf AWF of the Mn-sensitive cultivar (cv) TVu 91 but not of the Mn-tolerant cv 1987 showed an increase of guaiacol-POD and NADH-peroxidase activities at elevated AWF Mn concentrations. two-dimensional resolutions of AWF proteins revealed that cv TVu 91 expressed more and additional proteins at high Mn treatment, whereas Mn-tolerant cv TVu 1987 remained nearly unaffected. In both cultivars, NADH-peroxidase activity and accompanied H2O2 formation rate in vitro were significantly affected by Mn2+, p-coumaric acid, and metabolites occurring in the AWF. The total phenol concentration in the AWF was indicative of advanced stages of Mn toxicity but was rather unrelated to early stages of Mn toxicity and genotypic differences in Mn tolerance. The NADH oxidation by AWF PODs was significantly delayed or enhanced in the presence of the protein-free AWF from cv TVu 1987 or cv TVu 91, respectively. High-performance liquid chromatography analysis of AWF indicates the presence of phenols in cv TVu 1987 not observed in cv TVu 91. We conclude from our studies that the H2O2-producing NADH peroxidase and its modulation by stimulating or inhibiting phenolic compounds in the leaf apoplast play a major role for Mn toxicity and Mn tolerance in cowpea.  相似文献   

10.

Background and aims

This study aimed to investigate the roles of silicon (Si) in ameliorating manganese (Mn) toxicity in two rice (Oryza sativa L.) cultivars: i.e. cv. Xinxiangyou 640 (XXY), a Mn-sensitive cultivar and cv. Zhuliangyou 99 (ZLY), a Mn-tolerant cultivar.

Methods

Plants were cultured in nutrient solution containing normal Mn (6.7 μM) or high Mn (2.0 mM), both with or without Si supply at 1.5 mM Si.

Results

Plant growth was severely inhibited by high Mn in cv. XXY, but was enhanced by Si supply. In cv. XXY, Si-enhanced tolerance resulted from a restriction of Mn transport, whereas in cv. ZLY Mn uptake was depressed. In cv. XXY, high Mn significantly increased superoxide dismutase (SOD), catalase and ascorbate peroxidase activities but decreased non-protein thiols and glutathione concentrations, leading to accumulation of H2O2 and malondialdehyde. The addition of Si significantly counteracted high Mn-elevated malondialdehyde and H2O2 concentrations and enhanced plant growth. In cv. ZLY, high Mn considerably raised SOD activities and glutathione concentrations, thus leading to relatively low oxidative damage.

Conclusions

Si-enhanced Mn tolerance was attributed mainly to restricted Mn transport in cv. XXY but to depressed Mn uptake in cv. ZLY. Silicon mainly influenced non-enzymatic antioxidants in these two rice cultivars under high Mn stress.  相似文献   

11.
Differences in tolerance to Mn excess and amelioration by Si were evaluated in two maize varieties. Dry weight, callose accumulation, chloroplast ultrastructure, and photosynthesis parameters were used as stress indicators. Variety Kneja 605 was much more Mn-sensitive than variety Kneja 434. In Kneja 605 excess Mn caused severe chloroplast damage and enhanced carotenoid production, symptoms similar to those triggered by photoinhibiton. In Mn-tolerant Kneja 434, in contrast, a Mn-induced decrease of the carotenoid concentrations, and only slight alterations in the chloroplasts were observed. These effects were similar to light Fe-deficiency symptoms. The threshold tissue concentration for Mn-induced callose accumulation was much lower in Kneja 605 than in Kneja 434. Therefore tolerance to excess Mn in Kneja 434 was not due to more efficient exclusion but to more efficient detoxification and compartmentation of Mn. The constitutively thicker epidermal layers in Kneja 434 and the observation that Si-induced amelioration of Mn toxicity in Kneja 605 substantially increased the thickness of the epidermal layers suggest that Mn storage in non-photosynthetic tissue could be a Mn tolerance mechanism in maize.  相似文献   

12.
Grapes are commercially grown worldwide for fresh fruit and wine. They are mainly classified into bunch and muscadine grapes. These species differ in their sugar content and composition, photosynthetic efficiency and tolerance to abiotic and biotic stresses. Grape berry relies on carbohydrates produced during photosynthesis to support its development and composition. In view of the unique physiology and genetic make‐up of muscadine grape, a proteomics study was performed to increase our knowledge of Vitis leaf proteome in order to improve enological and disease tolerance characteristics of grape species. A high throughput two‐dimensional gel electrophoresis (2‐DE) was conducted on muscadine, bunch and hybrid bunch leaf proteins. The differentially expressed proteins were excised from 2‐DE gels, subjected to in‐gel trypsin digestion, and analysed in MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed by searching against Viridiplantae database using Matrix Science algorithm. Proteins were mapped to universal protein resource to study gene ontology. We have discovered >255 proteins with pIs between 3.5 and 8.0 and molecular weight between 12 and 100 kDa among the Vitis species. Comparative analysis of leaf proteome showed that 54 polypeptides varied qualitatively and quantitatively among the three Vitis species studied. Of these, seven proteins were unique to muscadine, two proteins were present in both muscadine and bunch, while 28 proteins were common to all the three species. Bioinformatic analysis of these proteins showed that they are involved in signal transduction pathway, transport of metabolites, energy metabolism, protein trafficking, photosynthesis and defence. We have also identified proteins unique to muscadine grape that are involved in defence and stress tolerance. In addition, photosynthesis‐related proteins were found to be more abundant in Vitis vinifera grape compared to other Vitis species.  相似文献   

13.
After aluminum toxicity, manganese (Mn) toxicity is probably the second most important growth limiting factor in acid soils. The purpose of this study was to determine the feasibility of using chlorophyll content and leaf elongation rate (LER) for regrowth of Mn stressed seedlings as a rapid seedling based screening bioassay for Mn tolerance in segregating populations of wheat (Triticum aestivum L.). In one experiment, chlorophyll was determined for the cultivars Norquay (Mn-tolerant) and Columbus (Mn-sensitive) subjected to twelve Mn levels (2 to 2000 μM) in nutrient solutions. As Mn concentration increased, chlorophyll ‘a’ and ‘b’ contents of the Mn-tolerant cultivar decreased up to 9%, while in the Mn-sensitive cultivar it was reduced by as much as 43%. The chlorophyll ‘a/b’ ratio did not differ among Mn concentrations for either cultivar. In a second experiment, chlorophyll content and LER for regrowth of Mn stressed seedlings (1000 μM) was determined for Columbus and Katepwa (Mn-sensitive), Oslo (Mn-intermediate), and Norquay and Laura (Mn-tolerant). Manganese tolerance as assayed by chlorophyll ‘a’ and ‘b’ and LER was significantly correlated with Mn tolerance as assayed by the relative root weight methodology (RRW). Thus, chlorophyll content of Mn-stressed seedlings and LER of seedling regrowth appear to be suitable techniques for screening unreplicated selections of segregating populations for tolerance to Mn.  相似文献   

14.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

15.
Mn- and Zn-deficiency or excess reduce plant growth and development. Engineering plants with enhanced metal tolerance and accumulation is a major goal in phytoremediation/phytostabilization. Moreover, improved growth under unfavourable mineral conditions contributes to better crop production. In this study, ECA3 cDNA from Arabidopsis thaliana, encoding a P2A-ATPase, was introduced into Nicotiana tabacum var. Xanthi, to examine its value for modifying responses to cations, primarily Mn, Zn and Ca. AtECA3 was ectopically expressed under the CaMV 35S promoter. Transgenic and wild-type plants were tested under hydroponic conditions for their responses to a range of metal exposures (low, moderate and high concentrations), and their tolerance and accumulation were evaluated. AtECA3 expression resulted in better growth of plants at moderate levels of Mn (2 μM) in the medium and enhanced tolerance to high Mn (100 μM). Transgenic plants were also more tolerant to Ca-deficiency conditions, although they showed no differences to wild-type with respect to overall Ca levels. Transgene expression did not produce one unique pattern of Mn and Zn accumulation but instead depended on the external concentration of the particular metal supplied. Thus the enhancement of plant productivity at moderate Mn levels and increased Mn tolerance at high (toxic) Mn supply, as well as the slight increase in Ca-deficiency tolerance seen in ECA3-transformed plants indicates that this gene could be useful in plant biotechnological strategies.  相似文献   

16.
Manganese accumulation in rice: implications for photosynthetic functioning   总被引:1,自引:0,他引:1  
In order to gain fundamental insights into the nature of the adaptation to Mn excess, the characterisation of the photosynthetic apparatus in Mn-treated rice was carried out in 21-day-old plants. We found 17- and 11-fold increases in Mn in the leaf tissues and in thylakoid, respectively, when the plants were grown hydroponically in nutrient solutions with Mn concentrations between 0.125 and 32 mg l(-1) (2.3 and 582.5 microM). Net photosynthesis and the photosynthetic capacity decreased after the 0.5 and 2 mg l(-1) (9.1 and 36.4 microM) Mn treatment, respectively. The stomatal conductance displayed a similar trend to that of photosynthetic capacity. The levels of basal chlorophyll fluorescence and the ratio between variable and maximum chlorophyll fluorescence did not vary significantly among treatments, but the photochemical quenching and the quantum yield of non-cyclic electron transport increased until the 2 mg l(-1) (36.4 microM) Mn treatment. The lipid matrix of thylakoids revealed a global increase in the proportions of phospholipids, relative to galactolipids. This pattern was coupled with diminishing levels of monogalactosyldiacylglycerol. The relative ratio between total carotenoids and total chlorophylls decreased until the last Mn treatment, yet the levels of carotenes, zeaxanthin, and violaxanthin plus antheraxanthin displayed different patterns. It was further found that the de-epoxidation state involving the components of the xanthophylls cycle increased until the 8 mg l(-1) (145.6 microM) Mn treatment. The levels of the photosynthetic electron carriers displayed different patterns, with plastocyanin and the high and low forms of cytochrome b559 remaining steady, whereas cytochromes b563 and f increased until the 8 mg l(-1) (145.6 microM) Mn treatment and the quinone pool increased until the highest Mn treatment. It was concluded that Mn-mediated inhibition of rice photosynthesis barely implicates stomatal conductance, as well as the distribution of energy within the photosystems. In this context, alterations to the relative proportions of the different acyl lipids and isoprenoids, as well as to the accumulations of the photosynthetic electron carriers, seem to play a major role.  相似文献   

17.
用简易、有效的人工光氧化和遮荫技术对30个水稻(Oryza sativa L.)种质进行筛选,鉴定出既耐光氧化又耐荫、耐光氧化不耐荫、耐荫不耐光氧化、既不耐荫又不耐光氧化等4种品种类型,并用既耐光氧化又耐荫的品种"武育粳3号"和对光氧化和遮荫均敏感的品种"香籼"进行光合特性研究.结果表明:在遮荫条件下,与对光氧化和遮荫敏感的品种"香籼"比较,"武育粳3号"的PSⅡ活性差异不大,RuBisCO活性降低较少,光合能力、光合生产力较高.在光抑制条件下,"武育粳3号"的PSⅡ活性,PSⅡ光化学效率(Fv/Fm),PSⅡ-D1蛋白含量降低较少,光合作用光抑制较轻.在光氧化条件下,内源活性氧清除剂SOD诱导活性高,清除O-能力强,因而叶绿素衰减较慢.上述研究为水稻育种提供了配套的优良生理特性的鉴定技术和生理依据.  相似文献   

18.
Two sand culture experiments were carried out to identify commercial cultivars of lucerne or alfalfa (Medicago sativa L.) which contain elite, Mn-tolerant plants for use in a selection programme to increase the acid-soil tolerance of this perennial legume. Differences in Mn tolerance, both within and between cultivars, were observed when a range of cultivars were exposed to regular waterings with dilute nutrient solution containing 20 or 25 mg Mn L–1. Under these moderately toxic regimes, the winter dormant cultivars Cimmaron and WL 318 were found to contain elite plants that had greater dry matter yields than their mean cultivar yield under non-toxic Mn conditions.Cultivars which contained elite, Mn-tolerant plants could not be identified by phenotypic characteristics such as their height or their toxicity symptom score, nor by their winter dormancy class. Possible reasons for the occurrence of elite plants in these cultivars are discussed. The elite, high yielding Mn-tolerant plants could not be identified from the other plants within their cultivar population by their Mn toxicity symptoms nor by their height.  相似文献   

19.
The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased Ci values and decreased Rubisco activity. Salinity decreased both the Vcmax (in vivo Rubisco activity) and Jmax (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks.  相似文献   

20.
Despite the evidence for a critical role of Mn in malate decarboxylation and CO2 release for carbon fixation reactions in C-4 plants, there is a lack of information on their Mn requirement. The objective of this study was to establish Mn levels needed for optimum growth and photosynthesis of four agriculturally important C-4 species, NAD-ME C-4 pearl millet and purple amaranth, and NADP-ME C-4 corn and sorghum, as compared to two C-3 species, wheat and squash. Plants were grown hydroponically in a complete nutrient solution with Mn concentrations ranging from 0 to 100 μM. We report that under these conditions, C-3 and NADP-ME C-4 plants reached their maximum biomass production with 2–5 μM Mn, the concentration commonly used in plant nutrient media. In contrast, Mn concentrations supporting maximum performance of NAD-ME C-4 plants were up to 20-fold higher and ranged between 50 and 100 μM. Although leaf tissue Mn concentrations increased in parallel with Mn nutrition in all plants, the higher leaf Mn had no effect on NADP-ME C-4 or C-3 plants, but it caused a large, up to 100%, increase in net photosynthetic rate in NAD-ME C-4 species. The highest photosynthetic rates across the spectrum of photon flux density were recorded for C-3 and NADP-ME C-4 plants receiving 2–5 μM Mn, and for NAD-ME C-4 species millet and amaranth supplied with 50 or 100 μM Mn, respectively. Squash (C-3) plants were the most sensitive to Mn and their photosynthetic rate was severely depressed with more than 10 μM Mn. The increase in photosynthetic rates of NAD-ME C-4 species occurred without an increase in stomatal conductance, eliminating CO2 uptake as the main cause. We propose that the higher photosynthetic rates in NAD-ME C-4 species supplied with higher Mn were a result of increased activation of the Mn-dependent NAD-ME in bundle sheath cells, producing greater CO2 supply for Calvin cycle reactions. This is, to our knowledge, the first report on a significantly higher Mn requirement for optimum photosynthesis and biomass production of NAD-ME C-4 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号