首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

2.
Due to anthropogenic influences, solar UV-B irradiance at the earth’s surface is increasing. To determine the effects of enhanced UV-B radiation on photosynthetic characteristics of Prunus dulcis, two-year-old seedlings of the species were submitted to four levels of UV-B stress, namely 0 (UV-Bc), 4.42 (UV-B1), 7.32 (UV-B2) and 9.36 (UV-B3) kJ m−2 d−1. Effects of UV-B stress on a range of chlorophyll (Chl) fluorescence parameters (FPs), Chl contents and photosynthetic gas-exchange parameters were investigated. UV-B stress promoted an increase in minimal fluorescence of dark-adapted state (F0) and F0/Fm, and a decrease in variable fluorescence (Fv, Fv/Fm, Fv/F0 and F0/Fm) due to its adverse effects on photosystem II (PSII) activity. No significant change was observed for maximal fluorescence of dark-adapted state (Fm). Enhanced UV-B radiation caused a significant inhibition of net photosynthetic rate (P N) at UV-B2 and UV-B3 levels and this was accompanied by a reduction in stomatal conductance (g s) and transpiration rate (E). The contents of Chl a, b, and total Chl content (a+b) were also significantly reduced at increased UV-B stress. In general, adverse UV-B effects became significant at the highest tested radiation dose 9.36 kJ m−2 d−1. The most sensitive indicators for UV-B stress were Fv/F0, Chl a content and P N. Significant P<0.05 alteration in these parameters was found indicating the drastic effect of UV-B radiation on P. dulcis.  相似文献   

3.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

4.
The effects of exogenous salicylic acid (SA), sodium nitropusside (SNP, a nitric oxide donor), or their combination on dwarf polish wheat (Triticum polonicum L.) seedlings under UV-B stress were studied. The UV-B stress significantly decreased plant height, shoot dry mass, pigment content, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, and variable to maximum chlorophyll fluorescence ratio (Fv/Fm) in all plants, but less in the presence of SA, SNP, and their combination. On the other hand, there were considerable increases in malondialdehyde (MDA), proline, O2 ?-, and H2O2 content under the UV-B stress. When SA, SNP, and their combination were applied, content of MDA, proline, H2O2, and O2 ?- were less increased. Moreover, there were considerable increases in activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase under the UV-B stress and more in the presence of SA, SNP, and their combination. Therefore, it is considered that SA, SNP, and especially their combination could alleviate UV-B stress in dwarf polish wheat.  相似文献   

5.
在增强UV-B辐射下,以3年生兴安落叶松幼苗为实验材料,研究了外源NO供体硝普钠(Sodium nitroprusside,SNP)对幼苗的光合色素(Chla、Chlb和Car)和叶绿素荧光参数的影响。方差分析结果表明0.5 mmol·L-1的SNP对增补UV B胁迫下的兴安落叶松幼苗产生显著影响。0.5 mmol·L-1的SNP能够显著抑制增补UV-B辐射后光合色素、Fv/FmΦPSⅡFv′/Fm′和qP的明显下降以及Chla /Chlb、FoNPQ的升高。表明了外源NO能够减轻UV-B辐射胁迫下兴安落叶松幼苗光合反应中心的生理损伤,从而增强兴安落叶松幼苗对增补UV-B辐射胁迫环境的适应能力。  相似文献   

6.
We measured the responses of pigments and chlorophyll a fluorescence parameters of the Antarctic leafy liverwort Cephaloziella varians to snowmelt during austral spring 2005 at Rothera Point on the western Antarctic Peninsula. Although no changes to the concentrations of UV-B photoprotective pigments were detected during snowmelt, chlorophyll and carotenoid concentrations and maximum photosystem (PS)II yield (F v /F m) were respectively 88, 60 and 144% higher in the tissues of the liverwort that had recently emerged from snow than in those under a 10 cm depth of snow. A laboratory experiment similarly showed that effective PSII yield increased rapidly within the first 45 min after plants sampled from under snow were removed to an illuminated growth cabinet. The pigmentation and PSII yields of plants during snowmelt were also compared with those of plants in January, during the middle of the growing season at Rothera Point. During snowmelt, plants had lower F v /F m values, chlorophyll a/b ratios and concentrations of UV-B photoprotective pigments and carotenoids than during mid-season, suggesting that although there is some recovery of PSII activity and increases in concentrations of photosynthetic pigments during snowmelt, the metabolism of C. varians is restricted during this period.  相似文献   

7.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

8.
9.
10.
Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions.  相似文献   

11.
Cytokinins are a class of plant growth regulators that regulate several developmental processes in plants, and recently their role in counteracting the deleterious effects of abiotic stresses has been noted. The impacts of kinetin (10 µM, KN; an artificial cytokinin) on growth, photosystem II photochemistry, and nitrogen metabolism in tomato seedlings exposed to two levels (UV-B1, ambient+?1.2 kJ m?2 day?1, and UV-B2, ambient+?2.4 kJ m?2 day?1) of enhanced UV-B radiation were analyzed under open field condition. The growth, pigment contents, carbonic anhydrase activity, photosynthetic O2 yield, and values of chlorophyll a fluorescence parameters: F v/F 0, F v/F m or φP0, ψ 0, φE 0, and PIABS declined, whereas the values of energy flux parameters (ABS/RC, TR0/RC, ET0/RC, and DI0/RC) of PS II, efficiency of water splitting complex (F 0/F v), and respiratory rate of O2 uptake increased under UV-B stress. Likewise, UV-B exposure at both doses significantly inhibited the activity of enzymes involved in nitrogen metabolism: nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase. In contrast, an enhancing effect on glutamate dehydrogenase activity was observed under UV-B stress. Exogenous KN resulted in a significant attenuation in UV-B-induced negative effects on growth, pigments, photosynthesis, and nitrogen metabolism. The study concludes that exogenous KN improved the growth performance of tomato seedlings by attenuating the damaging effects of UV-B radiation on photochemistry of PS II and nitrogen metabolism, and the alleviating effect against the low dose (UV-B1) of UV-B was more pronounced.  相似文献   

12.
The influence of chronic exposure to UV-B and UV-A radiation on growth and photosynthesis of two polar marine diatoms (Pseudonitzschia seriata and Nitzschia sp.) was investigated in cultures exposed to moderate photon fluences for 3–7 days. Population growth rates were diminished 50% by UV-B. Fluorescence induction kinetics of photo-system II (PSII) revealed that UV-B caused lower Fv/Fm ratios and half-rise times, indicating damage to the reaction center of PSII and to related elements of the photosynthetic electron transport chain. Carbon assimilation rates per cell and per chlorophyll a were nonetheless highest for UV-B—exposed populations, which also had the highest chlorophyll a content per cell. The UV-B—exposed cells were, however, more vulnerable to visible light-induced photoinhibition. Exposure to UV-A in the absence of UV-B had little effect on growth, fluorescence induction of PSII, or chlorophyll a contents but did have some inhibitory effects on carbon assimilation per chlorophyll a and per cell. The increased photosynthetic capacity of UV-B-exposed cells suggested some ability to compensate for damage to the photosynthetic apparatus.  相似文献   

13.
Dissipation of light energy absorbed by photosystem II (PSII) in assimilating shoots of an evergreen shrub Ephedra monosperma was investigated during its transition from the vegetative to frost-tolerant state under natural conditions of Central Yakutia. The dynamics of modulated chlorophyll fluorescence and carotenoid content was analyzed during seasonal decrease in ambient temperature. The seasonal cooling was accompanied by a stepwise decrease in photochemical activity of PSII (F v/F m = (F m ? F 0)/F m). The decrease in F v/F m occurred from the beginning of September to the end of October, when the temperature was lowered from 10 to ?8°C. During winter period the residual activity of PSII was retained at about 30% of the summer values. The seasonal decrease in temperature was accompanied by a significant stimulation of pH-independent dissipative processes in reaction centers and antenna of PSII. The increase in energy losses was paralleled by a proportional increase in zeaxanthin content on the background of decreasing content of violaxanthin and β-carotene as possible zeaxanthin precursors. At the same time, inhibition of light-induced non-photochemical quenching in the PSII antenna was observed. The results suggest that principal photoprotective mechanisms during seasonal lowering of temperature are: (1) inactivation of PSII and dissipation of excitation energy in PSII reaction centers and (2) zeaxanthin-mediated energy dissipation in the antenna complexes. The first mechanism seems to prevail at early stages of seasonal cooling, whereas both mechanisms are recruited from the onset of sustained freezing temperatures.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

15.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

16.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

17.
The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (??PSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast.  相似文献   

18.
19.
Hemiepiphytic Ficus species exhibit more conservative water use strategy and are more drought-tolerant compared with their non-hemiepiphytic congeners, but a difference in the response of photosystem I (PSI) and photosystem II (PSII) to drought stress has not been documented to date. The enhancement of non-photochemical quenching (NPQ) and cyclic electron flow (CEF) have been identified as important mechanisms that protect the photosystems under drought conditions. Using the hemiepiphytic Ficus tinctoria and the non-hemiepiphytic Ficus racemosa, we studied the water status and the electron fluxes through PSI and PSII under seasonal water stress. Our results clearly indicated that the decline in the leaf predawn water potential (ψpd), the maximum photosynthetic rate (Amax) and the predawn maximum quantum yield of PSII (Fv/Fm) were more pronounced in F. racemosa than in F. tinctoria at peak drought. The Fv/Fm of F. racemosa was reduced to 0.69, indicating net photoinhibition of PSII. Concomitantly, the maximal photo-oxidizable P700 (Pm) decreased significantly in F. racemosa but remained stable in F. tinctoria. The fraction of non-photochemical quenching [Y(NPQ)] and the ratio of effective quantum yield of PSI to PSII [Y(I)/Y(II)] increased for both Ficus species at peak drought, with a stronger increase in F. racemosa. These results indicated that the enhancement of NPQ and the activation of CEF contributed to the photoprotection of PSI and PSII for both Ficus species under seasonal drought, particularly for F. racemosa.  相似文献   

20.
N. Sui  M. Li  K. Li  J. Song  B. -S. Wang 《Photosynthetica》2010,48(4):623-629
In order to examine the possible role of unsaturated fatty acids in photosynthesis of halophytes under high salinity, the effect of salinity on plant growth, chlorophyll (Chl) content, photochemical efficiency of PSII, membrane lipid content and fatty acids composition of a C3 euhalophyte Suaeda salsa L. was investigated. Salt stress induced a slight increase of the maximal photochemical efficiency of PSII (Fv/Fm), actual PSII efficiency (ΦPSII), Chl a content and Chl a/b ratio. The unsaturated fatty acid content also increased under salt stress. The proportion of MGDG, DGDG, SQDG, and PC decreased, while the proportion of PG increased from 10.9% to 26.9% under salt stress. These results suggest that S. salsa displays high resistance to photoinhibition under salt stress and that increased concentration of unsaturated fatty acids in membrane lipids of S. salsa enhances the tolerance of photosystem II to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号