首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of the Meiotic Division of Malarial Parasites   总被引:3,自引:0,他引:3  
Zygotes of Plasmodium berghei were cultured 15–25 h in vitro to yield mature infective ookinetes. Samples taken in the first 5 h of culture were examined by electron microscopy. Meiotic figures were detected in the nuclei of the zygotes. Threadlike leptotene chromatids (chromosomes) condensed from attachment plaques on the nuclear envelope; chromatid pairing followed (zygotene), with synaptonemal complexes subsequently appearing (pachytene). These complexes persisted into metaphase but dissociated when the chromatids rapidly decondensed during anaphase. At telophase of the first meiotic division the kinetochores were retracted toward two small spindle complexes, which were found at widely separated poles in the nuclear envelope. The observations are consistent with a haploid genome of 8–10 chromosomes.  相似文献   

2.
The effect of cell cycle mutation ff3 on chromosome segregation was studied on fixed cells of neural ganglia. The cell distributions by diameter of interphase nuclei and by distance between sister chromatid sets were compared at anaphase and telophase. In the control wild-type strain Lausenne, the cell distribution by distance between sister chromatids in anaphase was similar to their distribution by nuclear size. The mean distance between segregating chromatids at anaphase (lcp) coincided with the mean diameter of interphase nuclei (dcp) and was 8.3 microns. Cells passed to telophase when chromatids were at least 10 microns apart. The mutant ff3 strain differed from the control strain Lausenne in cell distribution by interphase nuclear diameter and distance between sister chromatids in anaphase; the mean nuclear diameter and mean distance between segregating chromatids similarly increased to 9.3 microns. A specific feature of mitosis in mutant strain ff3 was a premature beginning of telophase chromatin reorganization. This caused the occurrence of cells with abnormally short (less then the interphase nuclear diameter) distance between sister chromatid sets in telophase but not in anaphase, as if these cells had passed from anaphase to telophase prematurely, during the chromatid movement toward poles in anaphase A.  相似文献   

3.
Summary The arrangement of chromosome arms in metaphases and anaphases has been studied inVicia faba root meristem cells. During metaphase, the long chromosome arms are aligned parallel to the spindle axis. As a consequence, at the onset of anaphase, one chromatid can move straight ahead to the spindle pole whereas the other has to invert its orientation. Specially in narrow cells it has been observed frequently that some chromatids move in a reverse orientation to the pole, i.e., they move telomere-first instead of centromere-first. This behaviour results in a chromatid which protrudes beyond the main group of late anaphase or telophase chromatids. It is dicussed that the most likely explanation for the phenomenon is that in narrow cells chromatid behaviour is influenced by steric hindrance by the tightly packed surrounding chromatids and microtubules. When there is insufficient room, some chromatids are unable to make the required U-turn. Under such conditions the kinetochore of a non-inverted chromatid pulls the chromatid in a reverse orientation to the pole. An alternative explanation, i.e., protruding chromatids being the result of a neocentric activity at the telomere end of a reverse-directed chromatid or the lateral associations of spindle microtubules, failed to find support by electron microscopical studies.  相似文献   

4.
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.  相似文献   

5.
For successful chromosome segregation during mitosis, several processes must occur early in the cell cycle, including spindle pole duplication, DNA replication, and the establishment of cohesion between nascent sister chromatids. Spindle pole body duplication begins in G1 and continues during early S-phase as spindle pole bodies mature and start to separate. Key steps in spindle pole body duplication are the sequential recruitment of Cdc31p and Spc42p by the nuclear envelope transmembrane protein Msp3p/Nep98p (herein termed Mps3p). Concurrent with DNA replication, Ctf7p/Eco1p (herein termed Ctf7p) ensures that nascent sister chromatids are paired together, identifying the products of replication as sister chromatids. Here, we provide the first evidence that the nuclear envelope spindle pole body assembly component Mps3p performs a function critical to sister chromatid cohesion. Mps3p was identified as interacting with Ctf7p from a genome-wide two-hybrid screen, and the physical interaction was confirmed by both in vivo (co-immunoprecipitation) and in vitro (GST pull-down) assays. An in vivo cohesion assay on new mps3/nep98 alleles revealed that loss of Mps3p results in precocious sister chromatid separation and that Mps3p functions after G1, coincident with Ctf7p. Mps3p is not required for cohesion during mitosis, revealing that Mps3p functions in cohesion establishment and not maintenance. Mutated Mps3p that results in cohesion defects no longer binds to Ctf7p in vitro, demonstrating that the interaction between Mps3p and Ctf7p is physiologically relevant. In support of this model, mps3 ctf7 double mutant cells exhibit conditional synthetic lethality. These findings document a new role for Mps3p in sister chromatid cohesion and provide novel insights into the mechanism by which a spindle pole body component, when mutated, contributes to aneuploidy.  相似文献   

6.
The effect of cell cycle mutation ff3 on chromosome segregation was studied on fixed cells of neural ganglia of Drosophila melanogasterlarvae. The cell distributions by diameter of interphase nuclei and by distance between sister chromatid sets were compared at anaphase and telophase. In the control wild-type strain Lausenne, the cell distribution by distance between sister chromatids in anaphase was similar to their distribution by nuclear size. The mean distance between segregating chromatids at anaphase (l av) coincided with the mean diameter of interphase nuclei (d av) and was 8.3 m. Cells passed to telophase when chromatids were at least 10 m apart. The mutant ff3 strain differed from the control strain Lausenne in cell distribution by interphase nuclear diameter and distance between sister chromatids in anaphase; the mean nuclear diameter and mean distance between segregating chromatids similarly increased to 9.3 m. A specific feature of mitosis in mutant strain ff3 was a premature beginning of telophase chromatin reorganization. This caused the occurrence of cells with abnormally short (less then the interphase nuclear diameter) distance between sister chromatid sets in telophase but not in anaphase, as if these cells had passed from anaphase to telophase prematurely, during the chromatid movement toward poles in anaphase A.  相似文献   

7.
Demonstration of membranous patches on isolated chromosomes   总被引:1,自引:0,他引:1  
High resolution scanning electron microscopy of isolated Chinese hamster ovary metaphase chromosomes revealed “membranous patches” at telomeric and juxtatelomeric regions of the chromosomes. The “membranous patches” remained bound to the chromosomes during centrifugation through dense sucrose, but not after treatment with detergents. These membrane fragments on isolated purified chromosomes may represent a component that binds the chromosome to the inner portion of the nuclear envelope up to late stages of prophase. These chromosome associated membranous patches may represent sites of reformation of the nuclear envelope at telophase.  相似文献   

8.
ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM   总被引:12,自引:8,他引:4  
Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.  相似文献   

9.
Van Hooser AA  Yuh P  Heald R 《Chromosoma》2005,114(6):377-388
In addition to genetic information, mitotic chromosomes transmit essential components for nuclear assembly and function in a new cell cycle. A specialized chromosome domain, called the perichromosomal layer, perichromosomal sheath, chromosomal coat, or chromosome surface domain, contains proteins required for a variety of cellular processes, including the synthesis of messenger RNA, assembly of ribosomes, repair of DNA double-strand breaks, telomere maintenance, and apoptosis regulation. The layer also contains many proteins of unknown function and is a major target in autoimmune disease. Perichromosomal proteins are found along the entire length of chromosomes, excluding centromeres, where sister chromatids are paired and spindle microtubules attach. Targeting of proteins to the perichromosomal layer occurs primarily during prophase, and they generally remain associated until telophase. During interphase, perichromosomal proteins localize to nucleoli, the nuclear envelope, nucleoplasm, heterochromatin, centromeres, telomeres, and/or the cytoplasm. It has been suggested that the perichromosomal layer may contribute to chromosome structure, as several of the associated proteins have functions in chromatin remodeling during interphase. We review the identified proteins associated with this chromosome domain and briefly discuss their known functions during interphase and mitosis.  相似文献   

10.
We investigated the three-dimensional (3D) arrangement of telomeres in structurally well preserved, interphase nuclei of Pisum stativum and Vicia faba root tips using in situ hybridization of a probe to telomeric sequences. The probe was labelled with either digoxygenin or biotin and hybridized sequences were detected by immunofluorescence. Three-dimensional data sets were collected by confocal optical microscopy or using a cooled CCD camera. Twelve stacks of optical sections of P. sativum nuclei and nine of V. faba nuclei were studied in detail. Projections through the stacks of optical sections revealed that, in both species, most of the telomeres were adjacent to the nuclear envelope except for a small number next to the nucleolar periphery. In V. faba nuclei, the telomeres were clearly clustered at one pole while in P. sativum there was only a slight tendency for clustering. In V. faba, clusters were found at opposite poles in pairs of sister nuclei rather than at adjacent poles as would be expected if the arrangement at telophase were maintained into interphase.by D. Bazett-Jones  相似文献   

11.
Mitosis in the cellular slime mold Polysphondylium violaceum   总被引:9,自引:9,他引:0       下载免费PDF全文
Myxamebas of Polysphondylium violaceum were grown in liquid medium and processed for electron microscopy. Mitosis is characterized by a persistent nuclear envelope, ring-shaped extranuclear spindle pole bodies (SPBs), a central spindle spatially separated from the chromosomal microtubules, well-differentiated kinetochores, and dispersion of the nucleoli. SPBs originate from the division, during prophase, of an electron-opaque body associated with the interphase nucleus. The nuclear nevelope becomes fenestrated in their vicinity, allowing the build-up of the intranuclear, central spindle and chromosomal microtubules as the SPBs migrate to opposite poles. At metaphase the chromosomes are in amphitelic orientation, each sister chromatid being directly connected to the corresponding SPB by a single microtubule. During ana- and telophase the central spindle elongates, the daughter chromosomes approach the SPBs, and the nucleus constricts in the equatorial region. The cytoplasm cleaves by furrowing in late telophase, which is in other respects characterized by a re- establishment of the interphase condition. Spindle elongation and poleward movement of chromosomes are discussed in relation to hypotheses of the mechanism of mitosis.  相似文献   

12.
K. Wells 《Protoplasma》1978,94(1-2):83-108
Summary The two division of meiosis that occur in the distal portion of the basidia ofPholiota terrestris were studied with light and electron microscopy. A diglobular spindle pole body (SPB), consisting of two globular elements and a connecting, electron-dense middle piece, is closely attached to the nuclear envelope of the fusion nucleus. During prometaphase I the globular elements separate and pass to the opposite poles as the chiastic spindle is formed. Evidently, the middle piece also separates with each resulting half persisting as an eccentric, electron-dense portion of the monoglobular SPB of meta-, ana-, and telophase nuclei. Also during prometaphase I, the nuclear envelope becomes discontinuous, especially in the lower region of the spindle. Light microscopic evidence of nucleolar extrusion at prometaphase I and II was observed. At metaphase I the SPB's move away from the condensed chromatic mass as the chromatids move asynchronously along the expanding spindle, evidently, due both to the elongation of the continuous fibers and the shortening of the chromosomal fibers. Two images resembling typical kinetochroes are illustrated in anaphase I nuclei, and others were seen during the study. At early telophase I and II the nuclear envelope is present laterally, is then formed in the interpolar region, and eventually appears between the chromatin and monoglobular SPB. A perforated ER cap, which is penetrated by microtubules, delimits the SPB. The nucleus enlarges, the chromatin becomes diffused except adjacent to the SPB, and the perinuclear ER becomes uniformly oriented around the nuclear envelope. At interphase I a diglobular SPB was not clearly documented. During interphase I the ER cap disappears but the perinuclear ER persists. Division II, with the exception of prophase, is essentially identical to division I. The postmeiotic, haploid nuclei migrate to the median or proximal region of the basidium. The diglobular SPB reappears. The meiotic apparatus inP. terrestris is considered to have the same fundamental features as those of plants and animals and in detail conforms to the pattern described in several light and electron microscopic studies of other Homobasidiomycetes.  相似文献   

13.
During mitosis a monooriented chromosome oscillates toward and away from its associated spindle pole and may be positioned many micrometers from the pole at the time of anaphase. We tested the hypothesis of Pickett-Heaps et al. (Pickett-Heaps, J. D., D. H. Tippit, and K. R. Porter, 1982, Cell, 29:729-744) that this behavior is generated by the sister kinetochores of a chromosome interacting with, and moving in opposite direction along, the same set of polar microtubules. When the sister chromatids of a monooriented chromosome split at the onset of anaphase in newt lung cells, the proximal chromatid remains stationary or moves closer to the pole, with the kinetochore leading. During this time the distal chromatid moves a variable distance radially away from the pole, with one or both chromatid arms leading. Subsequent electron microscopy of these cells revealed that the kinetochore on the distal chromatid is free of microtubules. These results suggest that the distal kinetochore is not involved in the positioning of a monooriented chromosome relative to the spindle pole or in its oscillatory movements. To test this conclusion we used laser microsurgery to create monooriented chromosomes containing one kinetochore. Correlative light and electron microscopy revealed that chromosomes containing one kinetochore continue to undergo normal oscillations. Additional observations on normal and laser-irradiated monooriented chromosomes indicated that the chromosome does not change shape, and that the kinetochore region is not deformed, during movement away from the pole. Thus movement away from the pole during an oscillation does not appear to arise from a push generated by the single pole-facing kinetochore fiber, as postulated (Bajer, A. S., 1982, J. Cell Biol., 93:33-48). When the chromatid arms of a monooriented chromosome are cut free of the kinetochore, they are immediately ejected radially outward from the spindle pole at a constant velocity of 2 micron/min. This ejection velocity is similar to that of the outward movement of an oscillating chromosome. We conclude that the oscillations of a monooriented chromosome and its position relative to the spindle pole result from an imbalance between poleward pulling forces acting at the proximal kinetochore and an ejection force acting along the chromosome, which is generated within the aster and half-spindle.  相似文献   

14.
The spindle pole body of the pathogenic yeast Exophiala dermatitidis was observed during the cell cycle using freeze-substitution and serial ultrathin sectioning electron microscopy. The spindle pole body was located on the outer membrane of the nuclear envelope and consisted of two disk elements connected by an intervening midpiece in G1 through G2 phases. Each disk element was composed of filamentous materials and measured 150 nm in diameter and 100 nm in thickness. The midpiece had higher electron density and measured 60 nm in length and 40 nm in thickness. At the beginning of prophase, each disk element of the spindle pole body enlarged to more than double in size. They were separated on the nuclear envelope, and associated with numerous cytoplasmic microtubules. At mitosis, the spindle pole body entered the nuclear envelope, associated with numerous nuclear microtubules, and was located at the spindle poles. At the end of telophase, it was extruded back into the cytoplasm from the nuclear envelope. Three-dimensional analysis of cells in different cell cycles suggested that duplication of the spindle pole body took place in early G1 phase. Thus, the location, structure, and duplication cycle of the E. dermatitidis spindle pole body were different from those of Saccharomyces cerevisiae.  相似文献   

15.
Somatic nuclear divisions in sporangiogenous plasmodia of Woronina pythii Goldie-Smith were studied with transmission electron microscopy. During metaphase, each nucleus formed a cruciform configuration as chromatin became aligned at the equatorial plate perpendicular to the persistent nucleolus. Except for polar fenestrations, the original nuclear envelope remained intact throughout the mitotic division. Intranuclear membranous vesicles appeared to bleb off the inner membrane of the original nuclear envelope, adhered to the surfaces of the separating chromatin, and eventually formed new daughter nuclear envelope within the original nuclear envelope. During the first 24 hr of vegetative plasmodial growth, each telophase nucleus exhibited an obvious constriction of the original nuclear envelope in the interzonal region. Similar constrictions were not evident in telophase nuclei found in 24–36-hr-old plasmodia. This variation in the ultrastructural morphology of cruciform division appears to be related to the age and size of each sporangiogenous plasmodium, and is the first to be documented within this group of fungal pathogens.  相似文献   

16.
Sister chromatids duplicated in S phase are connected with each other during G(2) and M phase until the onset of anaphase. This chromatid cohesion is essential for correct segregation of genetic material to daughter cells. Recently, understanding of the molecular mechanisms governing chromatid cohesion in yeast has been greatly advanced, whereas these processes in mammalian cells remain unclear. We report here biochemical and cytological analyses of human Rad21, a homologue of the yeast cohesin subunit, Scc1p/Mcd1p. hRad21 is a nuclear phosphorylated protein. Its abundance does not change during the cell cycle, and it becomes hyperyphosphorylated in M phase. Most hRad21 is not associated with chromatin when the nuclear envelope breakdown takes place in prophase. However, a detailed analysis of the spread chromosomes indicated that hRad21 remains associated with prometaphase-like chromosomes along their entire lengths. The mitotic chromatin-bound hRad21 becomes dissociated in a highly regulated manner because hRad21 remains specifically at the centromeres but disappears from the arm regions on metaphase-like chromosomes. Interestingly, hRad21 at the metaphase centromeres appears to be present at the inner pairing domain where the two sister chromatids are supposed to be in intimate contact. These results suggest that hRad21 has a critical role in chromatid cohesion in human mitotic cells.  相似文献   

17.
Neither colchicine nor ultracentrifugation, singly or in sequence, significantly alters the normal Rabl distribution of interphase or prophase telomeres in root tip cells of Allium cepa L. The position of telomeres was determined by C-banding, which stains A. cepa chromosomes only at the telomeres. Centrifugation displaces mitotic figures toward one side of the cell, but otherwise their mitotic configurations are little changed. These light microscope results are interpreted to show that a) interphase and prophase telomeres are attached strongly to some component of the nuclear envelope; b) a colchicine-sensitive component apparently does not attach interphase and prophase telomeres to the nuclear envelope; and c) chromosomes at all stages of the cell cycle are attached to some structure, nuclear envelope, and/or spindle fibers.  相似文献   

18.
Summary Mitotic divisions during sporangiogenous plasmodial cleavage inWoronina pythii were studied with transmission electron microscopy. We conclude that these nuclear divisions (e.g., transitional nuclear division, and sporangial mitoses) share basic similarities with the cruciform nuclear divisions inW. pythii and other plasmo-diophoraceous taxa. The major distinction appeared to be the absence of nucleoli during sporangial mitosis and the presence of nucleoli during cruciform nuclear division. The similarities were especially evident with regard to nuclear envelope breakdown and reformation. The mitotic divisions during formation of sporangia were centric, and closed with polar fenestrae, and characterized by the formation of intranuclear membranous vesicles. During metaphase, anaphase, and telophase, these vesicles appeard to bleb from the inner membrane of the original nuclear envelope and appeared to coalesce on the surface of the separating chromatin masses. By late telophase, the formation of new daughter nuclear envelopes was complete, and original nuclear envelope was fragmented. New observation pertinent to the mechanisms of mitosis in thePlasmodiophoromycetes include a evidence for the incorporation of membrane fragments of the original nuclear envelope into new daughter nuclear envelopes, and b the change in orientation of paired centrioles during sporangial mitosis.  相似文献   

19.
Evidence is presented that the structural rearrangements in late mitosis are accompanied by an alteration in membrane lipid synthesis. This evidence was derived from analyzing phospholipid classes after rapid-labeling, as well as from determining the intracellular site of incorporation of choline by HeLa S3 cells as they progressed from metaphase into early interphase (G1). Compared with postmitotic cell data, the recent mitotic cell data indicate a specific two- to threefold increase in the net synthesis of phosphatidylcholine (PC) species, which appeared to contain the more saturated fatty acids. Since this was observed with glycerol, choline, and orthophosphate labelings, and not with methyl labeling, it appears that the CDP-choline plus diacylglycerol pathway rather than the phosphatidylethanolamine to PC pathway was augmented. Electron microscope autoradiography of anaphase, telophase, and early G1 cells demonstrated that the reformed nuclear envelope was the incorporation site of a significant proportion of the newly synthesized PC. This incorporation occurred by early telophase prior to chromosome decondensation. The potential significance of PC metabolism with regard to membrane rearrangements, such as nuclear envelope reformation, is discussed.  相似文献   

20.
Summary Second generation BrdU-labeled acrocentric chromosomes exhibit NOR lateral asymmetry (NLA) in metaphases that have been sequentially stained with silver and the Hoechst-Giemsa sister chromatid differential (SCD) technique. The NLA presumably results from suppression of NOR activity in the doubly-substituted chromatid. Examination of single chromatid (NOR) associations in pairs of acrocentrics reveals that light chromatids associate less frequently than dark chromatids and that the frequency distribution of dark and light alignment configurations can be explained by this differential tendency to associate. Thus, it appears that a hypothesis of non-random chromatid segregation as an explanation for non-random chromatid alignments in associating acrocentric chromosomes is unwarranted.This work is a joint project of The University of Texas M.D. Anderson Hospital and Tumor Institute and the John S. Dunn Research Foundation of Houston, Texas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号