首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effect of three dietary components on hexokinase activity in the mucosa of rat small intestine was studied in vivo. Glucose, amino acids or an emulsion of monoglyceride with long-chain fatty acids were given by stomach tube to previously starved rats, and hexokinase activity was determined in the particle-free supernatant of mucosal homogenates. The formation of lactate from glucose and glucose 6-phosphate respectively was also measured. 2. When the three dietary components were given in isocaloric amounts, only glucose brought about an increase in hexokinase activity. 3. Intravenous injection of a similar amount of glucose to that given orally did not alter hexokinase activity. 4. An increase in the hexokinase activity of the particle-free supernatant prepared from mucosal homogenates was also observed after sacs of the small intestine of starved rats had been incubated in vitro in a medium containing glucose. Hexokinase activity increased to the values observed in corresponding preparations from fed rats, and this increase was strictly glucose-dependent.  相似文献   

2.
The phosphorylation of glucose and fructose is an important step in regulating the supply of hexose sugars for biosynthesis and metabolism. Changes in leaf hexokinase (EC 2.7.1.1) activity and in vivo metabolite levels were examined during drying in desiccation-tolerant Sporobolus stapfianus and Xerophyta viscosa. Leaf hexokinase activity was significantly induced from 85% to 29% relative water content (RWC) in S. stapfianus and from 89% to 55% RWC in X. viscosa. The increase in hexokinase corresponded to the region of sucrose accumulation in both species, with the highest activity levels coinciding with region of net glucose and fructose removal. The decline of hexose sugars and accumulation of sucrose in both plant species was not associated with a decline in acid and neutral invertase. The increase in hexokinase activity may be important to ensure that the phosphorylation and incorporation of glucose and fructose into metabolism exceeded production from potential hydrolytic activity. Total cellular glucose-6-phosphate (Glc-6-P) and fructose-6-phosphate (Fru-6-P) levels were held constant throughout dehydration. In contrast to hexokinase, fructokinase activity was unchanged during dehydration. Hexokinase activity was not fully induced in leaves of S. stapfianus dried detached from the plant, suggesting that the increase in hexokinase may be associated with the acquisition of desiccation-tolerance.  相似文献   

3.
The function of mitochondria-bound hexokinase, the enzymatic form peculiar to the brain, in utilization of ATP generated inside the organelles, was examined by incubating rat brain mitochondrial fraction with [14C]glucose under various conditions. Addition of succinate and ADP to the incubation medium increased glucose 6-phosphate formation by the mitochondrial hexokinase and caused a smaller increase in ATP concentration in the mitochondria. The glucose phosphorylation was markedly inhibited by the addition of dinitrophenol, potassium cyanide, and oligomycin, and the ATP concentration was decreased. On the other hand, addition of atractyloside suppressed the glucose phosphorylation without affecting the mitochondrial hexokinase activity, whereas addition of antiserum against the mitochondrial hexokinase inhibited both glucose 6-phosphate formation and hexokinase activity. A part of both the glucose phosphorylation and hexokinase activities, however, remained even in the presence of the maximum dose of the anti-hexokinase serum and atractyloside. These results indicate the active utilization of intrinsically generated ATP by the mitochondria-bound hexokinase, a part of which may be located away from the surface of the mitochondrial membrane.  相似文献   

4.
1. The effect of perfusion on the activities of hexokinase and lactate dehydrogenase was studied in the proximal half of the small intestine of fed and starved rats. 2. Perfusion of preparations from starved rats with a medium containing glucose caused a significant increase in hexokinase activity of the particle-free supernatant. The increase in activity was observed as early as 5min after the start of perfusion and persisted for up to 66min of perfusion. No increase in hexokinase activity of the particle-free supernatant was observed when a medium containing mannitol was used. As a further control, preparations from fed rats were perfused under the same conditions. With the medium containing glucose, the hexokinase activity of the particle-free supernatant remained unchanged during the first 15min of perfusion and thereafter fell gradually until, after 66min of perfusion, 73% of the original activity was retained. 3. The activity of lactate dehydrogenase in the particle-free supernatant prepared from the proximal half of the untreated small intestine of starved rats was significantly lower than in corresponding preparations from fed animals. However, it did not change significantly on perfusion with media containing either mannitol or glucose. 4. The distribution of hexokinase activity between total particulate fraction and particle-free supernatant was measured in preparations from starved rats after perfusion for 5–10min. In preparations that had not been perfused the ratio of hexokinase activity in total particulate fraction/particle-free supernatant was significantly higher in starved than in fed animals. After perfusion with a medium containing glucose, the total homogenate activity had not changed significantly, whereas the ratio of hexokinase activity in total particulate fraction/particle-free supernatant decreased significantly and approached the value obtained with fed animals. 5. The results agree with the view that the glucose-dependent increase of hexokinase activity in the soluble cell compartment as observed in vivo and in vitro in the intestinal mucosa of starved rats is brought about by a release of hexokinase activity from a particulate subcellular structure(s).  相似文献   

5.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

6.
Saccharomyces cerevisiae mutants containing different point mutations in the HXK2 gene were used to study the relationship between phosphorylation by hexokinase II and glucose repression in yeast cells. Mutants showing different levels of hexokinase activity were examined for the degree of glucose repression as indicated by the levels of invertase activity. The levels of hexokinase activity and invertase activity showed a strong inverse correlation, with a few exceptions attributable to very unstable hexokinase II proteins. The in vivo hexokinase II activity was determined by measuring growth rates, using fructose as a carbon source. This in vivo hexokinase II activity was similarly inversely correlated with invertase activity. Several hxk2 alleles were transferred to multicopy plasmids to study the effects of increasing the amounts of mutant proteins. The cells that contained the multicopy plasmids exhibited less invertase and more hexokinase activity, further strengthening the correlation. These results strongly support the hypothesis that the phosphorylation activity of hexokinase II is correlated with glucose repression.  相似文献   

7.
Hexokinase activity was detected in cytosols and homogenates from different developmental stages of Bufo bufo embryos starting from stage 17. Free glucose was measured in the embryo cytosol and was detected at each stage tested. At stage 15, a large increase of glucose content of the embryo cytosol occurs. Hexokinase expression in the embryo thus occurs after the increase of cytosol glucose content occurring at stage 15. The findings rule out that glucose by itself is the hexokinase inducer in vivo. The very low glucose utilization found by many authors during early amphibian development may be related to the late hexokinase expression during Bufo bufo development.  相似文献   

8.
The metabolism of glucose in Plasmodium falciparum-infected human erythrocytes is increased 50- to 100-fold. This is accomplished in part by parasite-directed synthesis of a protozoan hexokinase with unique kinetic, electrophoretic, and heat stability properties. The total hexokinase activity is increased approximately 25-fold over that of control uninfected erythrocytes of the same age from the same donor. The parasite hexokinase has a lower affinity for glucose than the mammalian enzyme (Km = 431 microM +/- 21 S.D. for the parasite enzyme versus 98 microM +/- 10 for the erythrocyte enzyme), but the Km for ATP and the Vmax for both glucose and ATP are similar. The NADPH-dependent reduction of oxidized glutathione (GSSG) requires the formation of glucose 6-phosphate which in turn is metabolized by the pentose shunt pathway in which NADPH is generated. Using glucose as the substrate, lysates of P. falciparum-infected normal erythrocytes demonstrated enhanced ability to reduce GSSG. The rate of GSSG reduction was proportional both to the parasitemia and the hexokinase activity of the lysates. However, infected glucose-6-phosphate dehydrogenase-deficient red cell lysates displayed a severely restricted ability to reduce GSSG under the same conditions. In conclusion, P. falciparum-infected red cells contain a parasite-encoded hexokinase with unique properties which initiates the large increase in glucose consumption. In normal infected red cells, reduction of GSSG is also dependent upon hexokinase activity, but in infected glucose-6-phosphate dehydrogenase-deficient red cells, the absence of this pentose shunt enzyme remains the rate-limiting step in GSSG reduction.  相似文献   

9.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

10.
Development of mitochondrial energy metabolism in rat brain   总被引:6,自引:6,他引:0       下载免费PDF全文
1. The development of pyruvate dehydrogenase and citrate synthase activity in rat brain mitochondria was studied. Whereas the citrate synthase activity starts to increase at about 8 days after birth, that of pyruvate dehydrogenase starts to increase at about 15 days. Measurements of the active proportion of pyruvate dehydrogenase during development were also made. 2. The ability of rat brain mitochondria to oxidize pyruvate follows a similar developmental pattern to that of the pyruvate dehydrogenase. However, the ability to oxidize 3-hydroxybutyrate shows a different developmental pattern (maximal at 20 days and declining by half in the adult), which is compatible with the developmental pattern of the ketone-body-utilizing enzymes. 3. The developmental pattern of both the soluble and the mitochondrially bound hexokinase of rat brain was studied. The total brain hexokinase activity increases markedly at about 15 days, which is mainly due to an increase in activity of the mitochondrially bound form, and reaches the adult situation (approx. 70% being mitochondrial) at about 30 days after birth. 4. The release of the mitochondrially bound hexokinase under different conditions by glucose 6-phosphate was studied. There was insignificant release of the bound hexokinase in media containing high KCl concentrations by glucose 6-phosphate, but in sucrose media half-maximal release of hexokinase was achieved by 70μm-glucose 6-phosphate 5. The production of glucose 6-phosphate by brain mitochondria in the presence of Mg2++glucose was demonstrated, together with the inhibition of this by atractyloside. 6. The results are discussed with respect to the possible biological significance of the similar developmental patterns of pyruvate dehydrogenase and the mitochondrially bound kinases, particularly hexokinase, in the brain. It is suggested that this association may be a mechanism for maintaining an efficient and active aerobic glycolysis which is necessary for full neural expression.  相似文献   

11.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

12.
Hexokinase activity was detected in cytosols and homogenates from different developmental stages of Bufo bufo embryos starting from stage 17. Free glucose was measured in the embryo cytosol and was detected at each stage tested. At stage 15, a large increase of glucose content of the embryo cytosol occurs. Hexokinase expression in the embryo thus occurs after the increase of cytosol glucose content occuring at stage 15. The findings rule out that glucose by itself is the hexokinase inducer in vivo. The very low glucose utilization found by many authors during early amphibian development may be related to the late hexokinase expression during Bufo bufo development.  相似文献   

13.
1. The inhibition of hexokinase by glucose 6-phosphate has been investigated in crude homogenates of guinea-pig cerebral cortex by using a sensitive radio-chemical technique for the assay of hexokinase activity. 2. It was observed that 44% of cerebral-cortex hexokinase activity did not sediment with the microsomal or mitochondrial fractions (particulate fraction), and this is termed soluble hexokinase. The sensitivities of soluble and particulate hexokinase, and hexokinase in crude homogenates, to the inhibitory actions of glucose 6-phosphate were measured; 50% inhibition was produced by 0.023, 0.046 and 0.068mm-glucose 6-phosphate for soluble, particulate and crude homogenates respectively. 3. The optimum Mg(2+) concentration for the enzyme was about 10mm, and this appeared to be independent of the ATP concentration. In the presence of added glucose 6-phosphate, raising the Mg(2+) concentration to 5mm increased the activity of hexokinase, but above this concentration Mg(2+) potentiated the glucose 6-phosphate inhibition. When present at a concentration above 1mm, Ca(2+) ions inhibited the enzyme in the presence or absence of glucose 6-phosphate. 4. When the ATP/Mg(2+) ratio was 1.0 or below, variations in the ATP concentration had no effect on the glucose 6-phosphate inhibition; above this value ATP inhibited hexokinase in the presence of glucose 6-phosphate. ATP had an inhibitory effect on soluble hexokinase similar to that on a whole-homogenate hexokinase, so that the ATP inhibition could not be explained by a conversion of particulate into soluble hexokinase (which is more sensitive to inhibition by glucose 6-phosphate). It is concluded that ATP potentiates glucose 6-phosphate inhibition of cerebral-cortex hexokinase, whereas the ATP-Mg(2+) complex has no effect. Inorganic phosphate and l-alpha-glycerophosphate relieved glucose 6-phosphate inhibition of hexokinase; these effects could not be explained by changes in the concentration of glucose 6-phosphate during the assay. 5. The inhibition of hexokinase by ADP appeared to be independent of the glucose 6-phosphate effect and was not relieved by inorganic phosphate. 6. The physiological significance of the ATP, inorganic phosphate and alpha-glycerophosphate effects is discussed in relation to the control of glycolysis in cerebral-cortex tissue.  相似文献   

14.
Abstract High hexokinase activity was not related to glucose repression in Candida utilis IGC 3092. The addition of Cibacron Blue 3G-A to growing cells in batch culture led to a permanent in vivo hexokinase inactivation, decreased growth rate and inhibited alcohol dehydrogenase. Hexokinase inactivation up to 90% did not alleviate glucose repression of α-glucosidase, as has been described for Saccharomyces cerevisiae and other yeasts. Moreover, when cells were physiologically derepressed by growing them in a chemostat at low glucose concentrations, the highest hexokinase activity was shown by the derepressed cells, and decreased as repression increased. Thus, in our strain of C. utilis , hexokinase activity was inversely proportional to glucose repression.  相似文献   

15.
Abstract Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant ( frA ). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans , while the fr A1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the fr A1 mutation. The absence of hexokinase activity in the fr A1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and l-arabinose catabolism. This suggests that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.  相似文献   

16.
Human erythrocytes overloaded with homogeneous human hexokinase (up to 15-times the activity of normal RBC) show almost unmodified rates of glucose metabolized in the HMP, however hexokinase-loaded RBC are able to metabolize 1.5 fold more glucose than controls through the HMP when an oxidizing agent like methylene blue (5 to 100 microM) is present. Similarly, RBC loaded with inactivating anti-hexokinase IgG (12 +/- 3% residual hexokinase activity) show HMP rates unchanged under resting conditions, but only 12% of the HMP rate found in normal controls under oxidative stress. These data provide clear evidence that the HMP rate under conditions of oxidative stress is controlled by hexokinase activity and suggest that RBC from patients with hexokinase deficiency are not able to increase the HMP rate under oxidative stress like erythrocytes from individuals with G6PD deficiency.  相似文献   

17.
Considerable differences in steady-state hexokinase specific activity were found in 16 N.C.I.B. strains of Klebsiella aerogenes grown in identical conditions in glucose-limited chemostats. Strains of N.C.I.B. 8258 had no detectable activity, but its glucose-phosphoenolpyruvate phosphotransferase specific activity and that of the other strains were closely similar, and it is concluded that this phosphotransferase activity regulates the overall utilization of glucose, in which hexokinase plays no essential role. The hexokinase activity was subject to regulation by the availability of phosphorus, but this did not affect the glucose phosphotransferase activity. tlactose-grown organisms (including strain N.C.I.B. 8258) had no glucose phosphotransferase activity, but more than adequate hexokinase activity to phosphorylate the intracellularly liberated glucose.  相似文献   

18.
Potato (Solanum tuberosum L.) plants transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 1 (StHK1) exhibited altered enzyme activities and expression of StHK1 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed a 22-fold variation in leaves (from 22% of the wild-type activity in antisense transformants to 485% activity in sense transformants) and a 7-fold variation in developing tubers (from 32% of the wild-type activity in antisense transformants to 222% activity in sense transformants). Despite the wide range of hexokinase activities, no change was found in the fresh weight yield, starch, sugar, or metabolite levels of transgenic tubers. However, there was a 3-fold increase in the starch content of leaves from the antisense transformants after the dark period. Starch accumulation at the end of the night period was correlated with a 2-fold increase of glucose and a decrease of sucrose content. These results provide strong support for the hypothesis that glucose is a primary product of transitory starch degradation and is the sugar that is exported to the cytosol at night to support sucrose biosynthesis.  相似文献   

19.
The effect of experimental diabetes on the activity of hexokinase isoenzymes was studied in a wide range of tissues of the rat. In the tissues known to require insulin for glucose phosphorylation, the activity of hexokinase was markedly decreased; the fall being mainly in the Type IV (Glucokinase) in liver and Type II in other tissues, these tissues also exhibit glucose underutilization in diabetes. In the tissues which are commonly known not to require insulin, the activity of Type I hexokinase was significantly increased, these tissues exhibit aspects of glucose overutilization in diabetes in particular kidney and lens. These changes are discussed in relation to Spiro's hypothesis of glucose under and overutilization in tissues in diabetes.  相似文献   

20.
1. Cells from the bone marrow and cells from the thymus of the rat were incubated in the presence of glucose and glutamine and phytohaemagglutinin, concanavalin-A or lipopolysaccharide. Cells were harvested at times up to 4 hr, extracted and maximum activities of hexokinase, lactate dehydrogenase, citrate synthase or glutaminase measured. 2. In bone marrow cells, there were little changes in enzyme activities except for an increase in the activity of citrate synthase which was prevented by concanavalin-A. This mitogen also caused a decrease in the activity of hexokinase. 3. In contrast, in thymocytes, the activities of hexokinase and glutaminase were decreased in the control condition but addition of lipopolysaccharide, a B-cell mitogen prevented these decreases in activity and concanavalin-A maintained the activity of glutaminase. Concanavalin-A caused a decrease in hexokinase activity but a marked increase in that of glutaminase. 4. It is suggested that changes in the maximum activities of hexokinase and glutaminase over this 4 hr period may represent the effect of removal of thymus-produced growth factors, whose effects can be replaced, at least in part, by two mitogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号