首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spatiotemporally varying environments, host-parasite coevolution may lead to either host or parasite local adaptation. Using reciprocal infestations over 11 pairs of plots, we tested local adaptation in the hen flea and its main host, the great tit. Flea reproductive success (number of adults at host fledging) was lower on host individuals from the same plot compared with foreign hosts (from another plot), revealing flea local maladaptation. Host reproductive success (number of fledged young) for nests infested by foreign fleas was lower compared with the reproductive success of controls, with an intermediate success for nests infested by local fleas. This suggests host local adaptation although the absence of local adaptation could not be excluded. However, fledglings were heavier and larger when reared with foreign fleas than when reared with local fleas, which could also indicate host local maladaptation if the fitness gain in offspring size offsets the potential cost in offspring number. Our results therefore challenge the traditional view that parasite local maladaptation is equivalent to host local adaptation. The differences in fledgling morphology between nests infested with local fleas and those with foreign fleas suggest that flea origin affects host resource allocation strategy between nestling growth and defense against parasites. Therefore, determining the mechanisms that underlie these local adaptation patterns requires the identification of the relevant fitness measures and life-history trade-offs in both species.  相似文献   

2.
Parasites have detrimental effects on their hosts’ fitness. Therefore, behavioural adaptations have evolved to avoid parasites or, when an individual is already in contact with a parasite, prevent or minimize infections. Such anti‐parasite behaviours can be very effective, but can also be costly for the host. Specifically, ectoparasites can elicit strong host anti‐parasite behaviours and interactions between fleas (Siphonaptera) and their hosts are one of the best studied. In altricial bird species, nest fleas can negatively affect both parent and offspring fitness components. However, knowledge on the effects of fleas on precocial bird species is scarce. Research on geese in the Canadian Arctic indicated that fleas have a negative impact on reproductive success. One possible hypothesis is that fleas may affect female incubation behaviour. Breeding females with many fleas in their nest may increase the frequency and/or duration of incubation breaks and could even totally desert their nest. The aim of our study was to 1) determine if a similar negative relationship existed between flea abundance and reproductive success in our study colony of Arctic breeding barnacle geese Branta leucopsis and 2) experimentally quantify if such effects could be explained by a negative effect of nest fleas on female behaviour. We compared host anti‐parasite and incubation behaviour between experimentally flea‐reduced and control nests using wildlife cameras and temperature loggers. We found that flea abundance was negatively associated with hatching success. We found little experimental support, however, for changes in behaviour of the breeding female as a possible mechanism to explain this effect.  相似文献   

3.
The hen flea is a common parasite in bird nests, in particular, in tit species, and imposes considerable fitness costs for the host. These costs are expected to lead to selection for increased host defense, which in turn should select for better-adapted parasites. Our understanding of the coevolution of this host–parasite system is currently limited by the insufficient knowledge of both the timing of flea generations and their reproductive behavior within the nesting period of their hosts. In the present study we (1) followed the demography of experimental flea subpopulations during the host's breeding cycle, (2) assessed the importance of time–temperature effects in the nest by recording temperatures within the nest material, and (3) investigated the influence of variation in host timing and duration of the breeding period on flea development. We found the following. (1) Fleas completed either one or two generations within the birds' nesting cycle, leading to two well-defined periods of cocoon formation. (2) Within-nest temperatures during the warm period of the host breeding cycle—i.e., the incubation and nestling periods—depended on both outdoor temperatures and heat production from the breeding birds. Day-degree availability, a measure of physiological time, during the host incubation was significantly explained by the duration of incubation period and its timing in the season. Similarly, day-degrees during the warmer nestling period were significantly explained by its duration and its timing in the season. (3) The number of flea larvae found in the nests correlated with the host's timing and duration of the warm period available for their development; this was not the case, however, for the number of adult fleas. These results underline the importance of time–temperature effects as determinants of flea demography within the nests. The life-cycle and time–temperature effects are discussed in the light of potential host selection on parasite behavior and life histories.  相似文献   

4.
Host range is a key element of a parasite's ecology and evolution and can vary greatly depending on spatial scale. Generalist parasites frequently show local population structure in relation to alternative sympatric hosts (i.e. host races) and may thus be specialists at local scales. Here, we investigated local population specialization of a common avian nest‐based parasite, the hen flea Ceratophyllus gallinae (Schrank), exploiting two abundant host species that share the same breeding sites, the great tit Parus major (Linnaeus) and the collared flycatcher Ficedula albicollis (Temminck). We performed a cross‐infestation experiment of fleas between the two host species in two distinct study areas during a single breeding season and recorded the reproductive success of both hosts and parasites. In the following year, hosts were monitored again to assess the long‐term impact of cross‐infestation. Our results partly support the local specialization hypothesis: in great tit nests, tit fleas caused higher damage to their hosts than flycatcher fleas, and in collared flycatcher nests, flycatcher fleas had a faster larval development rates than tit fleas. However, these results were significant in only one of the two studied areas, suggesting that the location and history of the host population can modulate the specialization process. Caution is therefore called for when interpreting single location studies. More generally, our results emphasize the need to explicitly account for host diversity in order to understand the population ecology and evolutionary trajectory of generalist parasites.  相似文献   

5.
We investigated the relationship between host defense and specialization by parasites in comparative analyses of bird fleas and T-cell mediated immune response of their avian hosts, showing that fleas with few main host species exploited hosts with weak or strong immune defenses, whereas flea species that parasitized a large number of host species only exploited hosts with weak immune responses. Hosts with strong immune responses were exploited by a larger number of flea species than hosts with weak responses. A path analysis model with an effect of T-cell response on the number of host species, or a model with host coloniality directly affecting host T-cell response, which in turn affected the number of host species used by fleas, best explained the data. Therefore, parasite specialization may have evolved in response to strong host defenses.  相似文献   

6.
Katharina Gallizzi  Heinz Richner 《Oikos》2008,117(8):1209-1217
Parents can increase their reproductive success by assisting their neonate offspring in parasite defence. In birds, parental tactics include post-hatching parental responses such as increased parental care and pre-hatching maternal effects such as the transfer of maternal antibodies via the egg. These parasite-induced parental responses are known to reduce the effects of parasites on offspring, but their costs for the parasite are largely unknown. In two separate experiments on great tits Parus major we assessed these costs for hen fleas Ceratophyllus gallinae . Half of the parents where exposed to fleas during egg-laying to induce the parental response, while control nests were left flea-free. In experiment 1 parents raised their own young and we measured the effect of combined pre- and post-hatching parental effects, while in experiment 2 a cross-foster design allowed us to assess the effects of pre-hatching maternal effects alone. In both experiments we let fleas take a blood meal on nestlings from either flea-exposed or unexposed parents. We then measured flea-feeding duration, the quantity of extracted blood, and the fleas' subsequent survival time. We found in both experiments that on the largest nestlings of a brood flea survival was significantly reduced by the parental effects, whereas on the smaller nestlings it was independent of parental effects. The pre- and post-hatching parental responses did neither affect duration nor size of a flea blood meal. These results suggest first that the pre-hatching maternal effects, i.e. the substances transferred to the nestling via the egg, have the potential to harm fleas without reducing flea feeding capacity, and second that the strength of the maternal response varies between the nestlings, either because maternal products are unequally distributed among eggs within a clutch, or because large nestlings can build up a response that enhances the effect of the maternal products.  相似文献   

7.
Blue Tit nests are often heavily infested by fleas, which feed on the incubating female and the nestlings. Depending on habitat quality, the drawing of blood by fleas reduces offspring quality, or it is compensated by an increase in food provisioning by the adults and may reduce their future reproduction. Given these fitness costs, tits are expected to have evolved behavioural responses enabling them to remove, destroy or minimize the contact with fleas. To identify these traits, we video-recorded the changes in frequency and duration of the hosts' potential anti-flea behavioural defences in nests experimentally infested with low and high flea densities. We also investigated whether flea load affected the number of male feeds delivered to incubating females, and whether the parents increased their rate of food provisioning to the nestlings equally at high flea density. Flea density significantly affected the nest sanitation and sleeping behaviour of Blue Tit females but had no significant effect on grooming. Female Blue Tits increased the frequency but decreased the duration of bouts of these behavioural traits, and hence their time-budgets, based on per hour duration of behaviour, were not significantly affected by flea density. High flea density reduced nestling weight at the early nestling stage but these costs were fully compensated by an increase in female feeding effort. Males did not increase their frequency of food provisioning to incubating females nor to nestlings in heavily infested nests. The results are discussed in the light of parasite-mediated selection on host behaviour and the reciprocal host selection on flea life-history and behavioural traits.  相似文献   

8.
The southern African subspecies of Jacobin Cuckoo Clamator jacobinus serratus is a brood parasite of a range of host species. While Jacobin Cuckoos do not evict host young, previous research has found that host young rarely survive the nestling period. Here we provide the first records of Jacobin Cuckoo parasitism of a new host species, the Southern Pied Babbler Turdoides bicolor. We investigate rates of brood parasitism and the survival of host young. The Southern Pied Babbler is one of the largest recorded hosts for Jacobin Cuckoos and, unusually, we find that host young tend to survive the nestling period and maintain similar body mass to host young in unparasitized broods. However, host young were less likely to survive to independence than young raised in unparasitized nests, suggesting a post‐fledging reproductive cost to hosts.  相似文献   

9.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2007,154(3):601-609
Mechanisms that cause nonrandom patterns of parasite distribution among host individuals may influence the population and evolutionary dynamics of both parasites and hosts, but are still poorly understood. We studied whether survival, reproduction, and behavioral responses of fleas (Xenopsylla conformis) changed with the age of their rodent hosts (Meriones crassus), experimentally disentangling two possible mechanisms: (a) differential survival and/or fitness reward of parasites due to host age, and (b) active parasite choice of a host of a particular age. To explore the first mechanism, we raised fleas on rodents of two age groups and assessed flea survival as well as the quantity and quality of their offspring. To explore the second mechanism, three groups of fleas that differed in their previous feeding experience (no experience, experience on juvenile or experience on adult rodents) were given an opportunity to choose between juvenile and adult rodents in a Y-maze. Fleas raised on juvenile rodents had higher survival and had more offspring that emerged earlier than fleas raised on adults. However, fleas did not show any innate preference for juvenile rodents, nor were they able to learn to choose them. In contrast to our predictions, based on a single previous exposure, fleas learned to choose adult rodents. The results suggest that two mechanisms—differential survival and fitness reward of fleas, and associative learning by them—affect patterns of flea distribution between juvenile and adult rodents. The former increases whereas the latter reduces flea densities on juvenile rodents. The ability of fleas to learn to choose adult but not juvenile hosts may be due to: (a) a stronger stimulus from adults, (b) a higher profitability of adults in terms of predictability and abundance, or (c) the evolutionary importance of recognizing adult but not juvenile hosts as representatives of the species.  相似文献   

10.
Past studies on the relationship between nest ectoparasites and avian fitness have been primarily limited to altricial hosts. Life history strategies of precocial and altricial birds vary considerably, limiting our ability to infer the effect of nest parasites on fitness of precocial species. Ross's Chen rossii and lesser snow goose Chen caerulescens caerulescens populations have been growing at unprecedented high rates. New limiting factors on vital rates of these precocial birds may arise after populations have been released from previously regulating factors. The flea Ceratophyllus vagabundus vagabundus is an apparently newly emerging nest parasite in the arctic goose colony at Karrak Lake, Nunavut, Canada. We examined the relationship between flea abundance (measured by the proportion of goose eggs covered by blood in each nest) and goose reproductive success from 2001–2004. In three of four years of study, nest success was inversely related to flea abundance in nests. Despite the potential for high costs to individuals, the overall effects of fleas on goose nesting success have thus far been small. We demonstrated that nest parasites negatively influence reproductive success of precocial bird hosts despite host life history strategy of leaving the nest quickly after hatch, which results in minimal exposure to nest parasites compared to altricial birds that raise their young in the nest.  相似文献   

11.
We studied reproductive performance in two flea species (Parapulex chephrenis and Xenopsylla ramesis) exploiting either a principal or one of eight auxiliary host species. We predicted that fleas would produce more eggs and adult offspring when exploiting (i) a principal host than an auxiliary host and (ii) an auxiliary host phylogenetically close to a principal host than an auxiliary host phylogenetically distant from a principal host. In both flea species, egg production per female after one feeding and production of new imago after a timed period of an uninterrupted stay on a host differed significantly between host species. In general, egg and/or new imago production in fleas feeding on an auxiliary host was lower than in fleas feeding on the principal host, except for the auxiliary host that was the closest relative of the principal host. When all auxiliary host species were considered, we did not find any significant relationship between either egg or new imago production in fleas exploiting an auxiliary host and phylogenetic distance between this host and the principal host. However, when the analyses were restricted to auxiliary hosts belonging to the same family as the principal host (Muridae), new imago production (for P. chephrenis) or both egg and new imago production (for X. ramesis) in an auxiliary host decreased significantly with an increase in phylogenetic distance between the auxiliary and principal host. Our results demonstrated that a parasite achieves higher fitness in auxiliary hosts that are either the most closely related to or the most distant from its principal host. This may affect host associations of a parasite invading new areas.  相似文献   

12.
Several models predict changes in the distributions and incidences of diseases associated with climate change. However, studies that investigate how microclimatic changes may affect host–parasite relationships are scarce. Here, we experimentally increased the temperature in blue tit Cyanistes caeruleus nest boxes during their breeding season to determine its effects on the parasitic abundance (i.e. of nest‐dwelling ectoparasites, blood‐sucking flying insects and hemoparasites) in nests and the host condition of nestlings and adults. The temperature was increased using heat mats placed underneath the nest material, which resulted in an average temperature increase of 3ºC and a reduction in relative humidity of about six units. The abundance of mites Dermanyssus gallinoides and blowfly pupae Protocalliphora azurea was significantly reduced in heated nest boxes. Although not statistically significant, a lower prevalence of flea larvae Ceratophyllus gallinae was also found in heated nests. However, heat treatment did not affect hemoparasite infection of adult blue tits or the body condition of adult and nestling blue tits. In conclusion, heat treatment in blue tit nests reduced nest‐dwelling ectoparasites yet without any apparent benefit for the host.  相似文献   

13.
Aim We determined whether dissimilarity in species composition between parasite communities depends on geographic distance, environmental dissimilarity or host faunal dissimilarity, for different subsets of parasite species with different levels of host specificity. Location Communities of fleas parasitic on small mammals from 28 different regions of the Palaearctic. Method Dissimilarities in both parasite and host species composition were computed between each pair of regions using the Bray–Curtis index. Geographic distances between regions were also calculated, as were measures of environmental dissimilarity consisting of the pairwise Euclidean distances between regions derived from elevation, vegetation and climatic variables. The 136 flea species included in the dataset were divided into highly host‐specific species (using 1–2 host species per region, on average), moderately host‐specific species (2.2–4 hosts per region) and generalist species (>4 hosts per region). The relative influence of geographic distance, host faunal dissimilarity and environmental dissimilarity on dissimilarity of flea species composition among all regions was analysed for the entire set of flea species as well as for the three above subsets using multiple regressions on distance matrices. Results When including all flea species, dissimilarity in flea species composition was affected by all three independent variables, although the pure effect of dissimilarity in host species composition was the strongest. Results were different when the subsets of fleas differing in host specificity were treated separately. In particular, dissimilarity in species composition of highly host‐specific fleas increased solely with environmental dissimilarity, whereas dissimilarity for both moderately specific and non‐specific fleas increased with both geographic distance and dissimilarity in host species composition. Main conclusions Host specificity seems to dictate which of the three factors considered is most likely to affect the dissimilarity between flea communities. Counter‐intuitively, environmental dissimilarity played a key role in determining dissimilarity in species composition of highly host‐specific fleas, possibly because, although their presence in a region relies on the occurrence of particular host species, their abundance is itself mostly determined by climatic conditions. Our results show that deconstructing communities into subsets of species with different traits can make it easier to uncover the mechanisms shaping geographic patterns of diversity.  相似文献   

14.
Vertebrate hosts differ in their level of parasite susceptibility and infestation. In avian broods, variation in susceptibility of nestlings to ectoparasites may be associated with non‐uniform distributions of parasites among brood mates, with parasites concentrating feeding on the most vulnerable hosts. The presence of a highly susceptible nestling in a brood can benefit the remaining young by reducing the parasite pressure they experience; however, from a parasite’s perspective, broods with fewer susceptible hosts may provide effectively fewer resources than broods of the same size containing a greater abundance of susceptible hosts, and this could limit the number of parasites that a host brood can sustain. To test whether variation in number of susceptible hosts affects the number of parasites in bird nests, we first examined the role of host sex and induced immunity (via methionine supplementation) on susceptibility of mountain bluebirds Sialia currucoides to parasitism by blow flies Protocalliphora spp. We then assessed the effect of variation in number of susceptible hosts on the number of parasites inhabiting the nest. Only females showed a benefit of methionine supplementation, gaining mass more rapidly following supplementation compared to males. This suggests that females are more susceptible to parasites in this system; this was further supported by parasite feeding trials, in which parasites extracted larger blood meals from female than male hosts. Finally, the abundance of parasites in nests was predicted by brood sex ratio: broods containing more female young harboured more parasites. Hence, within‐brood variation in host susceptibility to parasites can not only influence the costs of parasitism for individual nestlings, but may also have consequences for the size of parasite populations within nests. If patterns of maternal investment affect the abundance of nest‐dwelling parasites, these interactions may be important for understanding fitness consequences of maternal resource allocation in many vertebrate hosts.  相似文献   

15.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2005,146(2):200-208
Parasites often confront conflicting demands when evaluating and distributing themselves among host individuals, in order to attain maximum reproductive success. We tested two alternative hypotheses about host preference by fleas in relation to the age of their rodent host. The first hypothesis suggests that fleas select adult over juvenile rodents because the latter represent a better nutritional resource (the “well-fed host” hypothesis), whereas the second hypothesis suggests that fleas prefer the weaker and less resistant juveniles because they are easier to colonise and exploit (“poorly fed host” hypothesis). We sampled fleas (Synosternus cleopatrae) on the gerbil (Gerbillus andersoni) in 23 different plots in the Negev desert and found an unequal distribution of fleas between adult and juvenile hosts. Furthermore, flea distribution changed as a function of flea density—from juvenile-biased flea parasitism (the “poorly fed host” hypothesis) at low densities to adult-biased flea parasitism (the “well-fed host” hypothesis) at high densities. Other factors that influenced flea preference were soil temperature and the presence of ticks. These results suggest that host selection is not an explicit alternative choice between adults and juveniles (“well-fed host” versus “poorly fed host” hypotheses), but rather a continuum where the distribution between adults and juveniles depends on host, parasite, and environmentally related factors.  相似文献   

16.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

17.
Michael Coslovsky  Heinz Richner 《Oikos》2012,121(10):1691-1701
Experimental studies incorporating multiple trophic levels are scarce but of increasing interest for understanding ecological communities. Here we investigated interactive effects of perceived predation risk and parasite pressure on life‐history traits in a hole‐nesting bird, and the effects of predation risk on parasite success. In a 3 × 2 experimental design we increased perceived predation risk for breeding great tits Parus major via simulations of either nest‐predators (woodpeckers) or post‐fledging predators (sparrowhawks) close to nests, and used a non‐predatory species (song thrush) as a control. Concurrently, half of the nests in each treatment were either infested with ectoparasites, or kept parasite‐free. Regarding the predation risk – parasite interaction, exposure to nest‐predators tended to lower wing and sternum growth rates of nestlings in the absence, but not the presence, of parasites. In the presence of parasites, exposure to a post‐fledging, but not to a nest‐predator, led to significantly reduced wing growth. Mass and tarsus length were not affected by predator exposure, but ectoparasites had slight positive effects on mass gain. In the last third of the nestling period, overall nestling size was significantly smaller when exposed to a post‐fledging predator than to a nest‐predator, but neither differed from the control. Parental feeding rates were not affected by the treatments, but parents became less selective towards food items under either predation risk. Hen‐flea population sizes (adult or larvae) in nests were not affected by predation risk treatment of hosts. In summary, we found some evidence for an interactive effect of predation risk and parasite pressure on nestling growth. The complexity of the interaction, combined with certain inconsistencies of the effects and potential statistical artifacts, prevent however a straightforward interpretation of the results. The insights from the study are useful for designing additional experiments to further investigate the complexity of predator–parasite interactions in wild populations.  相似文献   

18.
Behavioral, genetic, and immune variation within a host population may lead to aggregation of parasites whereby a small proportion of hosts harbor a majority of parasites. In situations where two or more parasite species infect the same host population there is the potential for interaction among parasites that could potentially influence patterns of aggregation through either competition or facilitation. We studied the occurrence and abundance patterns of two congeneric flea species on black-tailed prairie dog (Cynomys ludovicianus) hosts to test for interactions among parasite species. We live-trapped prairie dogs on ten sites in Boulder County, CO and collected their fleas. We found a non-random, positive association between the two flea species, Oropsylla hirsuta and O. tuberculata cynomuris; hosts with high loads of one flea species had high loads of the second species. This result suggests that there is no interspecific competition among fleas on prairie dog hosts. Host weight had a weak negative relationship to flea load and host sex did not influence flea load, though there were slight differences in flea prevalence and abundance between male and female C. ludovicianus. While genetic and behavioral variation among hosts may predispose certain individuals to infection, our results indicate apparent facilitation among flea species that may result from immune suppression or other flea-mediated factors.  相似文献   

19.
As avian brood parasitism usually reduces hosts'' reproductive success, hosts often exhibit strong defence mechanisms. While such host defences at the egg stage (especially egg rejection) have been extensively studied, defence mechanisms at the nestling stage have been reported only recently. We found a previously unknown anti-parasitism behaviour in the large-billed Gerygone, which is a host species of the little bronze-cuckoo, a host-evicting brood parasite. The hosts forcibly pulled resisting nestlings out of their nests and dumped them. Although it has been suggested that defence mechanisms at the nestling stage may evolve when host defence at the egg stage is evaded by the parasite, the studied host seems to lack an anti-parasitism strategy at the egg stage. This suggests that the evolutionary pathway may be quite different from those of previously studied cuckoo–host systems. Future research on this unique system may give us new insights into the evolution of avian brood parasitism.  相似文献   

20.
Several bird species, including cavity-nesters such as European starlings Sturnus vulgaris , add to their nests green sprigs of plants such as yarrow Achillea millefolium that are rich in volatile compounds. In this field study on another cavity-nester, tree swallows Tachycineta bicolor , we tested whether yarrow reduced ectoparasite loads (the nest protection hypothesis), stimulated nestling immune systems (the drug hypothesis), or had other consequences for nestling growth or parental reproductive success (predicted by both preceding hypotheses). Tree swallows do not naturally add greenery to their nests, and thus offer several advantages in testing for effects of greenery independent of other potentially confounding explanations for the behaviour. We placed fresh yarrow in 23 swallow nests on the day the first egg was laid, replenishing every two days until clutch completion (=three times), and at 44 control nests, nesting material was simply touched. At 12 days of age, we measured nestling body size and mass, and took blood smears to do differential white blood cell counts. We subsequently determined the number and proportion of young fledging from nests and the number of fleas remaining after fledging. Higher humidity was associated with higher flea numbers whereas number of feathers in the nest was not. Our most significant finding was that an average of 773 fleas Ceratophyllus idius was found in control nests, versus 419 in yarrow nests. Possibly, parents compensate for blood that nestlings lose to ectoparasites by increasing food delivery, because we detected no differences between treatments in nestling mass, nestling leukocyte profiles, or proportion of young fledging, or relative to flea numbers. Our results provide no support for the drug hypothesis and strong support for the nest protection hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号