首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metalloendopeptidase EP24.15 (EC3.4.24.15) is a neuropeptide-metabolizing enzyme present in neural and endocrine tissues, presumably functioning extracellularly. Because the majority of the EP24.15 activity is identified in the soluble fraction of cellular homogenates, suggesting that the enzyme is primarily an intracellular protein, we addressed the issue of how EP24.15 arrives in the extracellular environment. We utilized a model system of neuroendocrine secretion, the AtT20 cell. According to both enzymatic activity and immunologic assays, EP24.15 was synthesized in and released from AtT20 cells. Under basal conditions and after stimulation by corticotropin-releasing hormone or the calcium ionophore A23187, EP24.15 activity accumulated in the culture medium. This secretion was not attributable to cell damage, as judged by the absence of release of cytosolic enzyme markers and the ability to exclude trypan blue dye. Pulse-chase analysis and subcellular fractionation of AtT20 cell extracts suggested that the mechanism of EP24.15 secretion is not solely via classical secretory pathways. Additionally, drugs which disrupt the classical secretory pathway, such as Brefeldin A and nocodazole, blocked A23187-stimulated EP24.15 release yet had no effect on basal EP24.15 release, suggesting differences in the basal and stimulated pathways of secretion for EP24.15. In summary, EP24.15 appears to be secreted from AtT20 pituitary cells into the extracellular milieu, where the enzyme can participate in the physiologic metabolism of neuropeptides.  相似文献   

2.
The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function.  相似文献   

3.
Summary The two closely related soluble zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) readily hydrolyze the vasocative peptide bradykinin in vitro, and therefore may play a role in cardiovascular regulation. Although primarily soluble cytosolic enzymes, both secreted and membrane-associated forms of both peptidases have been reported. However, these enzymes have neither a transmembrane domain nor a signal sequence; thus, the mechanisms of membrane anchoring and secretion are unknown. In the present study, secreted/released EP24.15 and EP24.16 activity from aortic endothelial cells in culture was assessed by the cleavage of a specific quenched fluorescent substrate. An increase in enzyme activity released from endothelial cells, which express both peptidases, was seen following incubation with calcium-free media. In the AtT-20 endocrine cell (mouse pituitary corticotrope), which predominantly expresses EP24.15, the release of activity into media was unaffected by calcium removal. The release of enzyme activity from endothelial cells was inversely proportional to calcium concentrations ranging between 0.01 mM (activity equivalent to calcium-free media) and 0.5 mM (activity equivalent to normal media). Cleavage of the EP24.16-specific substrate AcNT8–13 indicated that the increase in enzyme activity released upon incubation with calcium-free medium was due at least in part to the release of EP24.16. These results suggest that EP24.15 and EP24.16 are secreted from endothelial cells, and that removal of calcium selectively enhances the release of EP24.16 by an as yet unknown mechanism.  相似文献   

4.
The two closely related soluble zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) readily hydrolyze the vasoactive peptide bradykinin in vitro, and therefore may play a role in cardiovascular regulation. Although primarily soluble cytosolic enzymes, both secreted and membrane-associated forms of both peptidases have been reported. However, these enzymes have neither a transmembrane domain nor a signal sequence; thus, the mechanisms of membrane anchoring and secretion are unknown. In the present study, secreted/released EP24.15 and EP24.16 activity from aortic endothelial cells in culture was assessed by the cleavage of a specific quenched fluorescent substrate. An increase in enzyme activity released from endothelial cells, which express both peptidases, was seen following incubation with calcium-free media. In the AtT-20 endocrine cell (mouse pituitary corticotrope), which predominantly expresses EP24.15, the release of activity into media was unaffected by calcium removal. The release of enzyme activity from endothelial cells was inversely proportional to calcium concentrations ranging between 0.01 mM (activity equivalent to calcium-free media) and 0.5 mM (activity equivalent to normal media). Cleavage of the EP24.16-specific substrate AcNT8-13 indicated that the increase in enzyme activity released upon incubation with calcium-free medium was due at least in part to the release of EP24.16. These results suggest that EP24.15 and EP24.16 are secreted from endothelial cells, and that removal of calcium selectively enhances the release of EP24.16 by an as yet unknown mechanism.  相似文献   

5.
Metalloendopeptidases expressed in neural tissue are characterized in terms of their neuropeptide substrates. One such neuropeptide, bradykinin (BK), is an important inflammatory mediator that activates the type-2 BK receptor (B2R) on the terminal endings of specialized pain-sensing neurons known as nociceptors. Among several metalloendopeptidases that metabolize and inactivate BK, EP24.15 and EP24.16 are known to associate with the plasma membrane in several immortalized cell lines. Potentially, the colocalization of EP24.15/16 and B2R at plasma membrane microdomains known as lipid rafts in a physiologically relevant nociceptive system would allow for discrete, peptidase regulation of BK signaling. Western blot analysis of crude subcellular fractions and lipid raft preparations of cultured rat trigeminal ganglia demonstrate similar expression profiles between EP24.15/16 and B2R on a subcellular level. Furthermore, the treatment of primary cultures of trigeminal ganglia with inhibitors of EP24.15/16 led to the potentiation of several bradykinin-induced events that occur downstream of B2R activation. EP24.15/16 inhibition by N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-AlalTyr-p-aminobenzoate (cFP) resulted in a 1000-fold increase in B2R sensitivity to BK as measured by inositol phosphate accumulation. In addition, cFP treatment resulted in a 31.1+/-5.0% potentiation of the ability of BK to inhibit protein kinase B (Akt) activity. Taken together, these data demonstrate that EP24.15/16 modulate intracellular, peptidergic signaling cascades through B2R in a physiologically relevant nociceptive system.  相似文献   

6.
Axonal transport of endopeptidase 24.15 (EP24.15), a putative neuropeptide degrading-enzyme, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. At 48h after ligation, a significant amount of the axonal transport of EP24.15 activity was found in the proximal segment, while axonal transport of deamidase activity, a lysosomal enzyme, increased in both proximal and distal segments. Western blot analysis of EP24.15 showed that EP24.15 immunoreactivity in the proximal segment was 1.8-fold higher than that in the middle segment. The immunohistochemical analysis of the segments also showed an increase in the immunoreactive EP24.15 in the proximal segment in comparison with that in the middle segment. In the distal segment, no axonal transport of EP24.15 was found in all methods examined, indicating that EP24.15 is mainly transported by an anterograde axonal flow. These observations suggest that EP24.15 may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.  相似文献   

7.
Glucose-regulated protein 94 (grp94) is a major component of the endoplasmic reticulum (ER) lumen of eukaryotic cells. We showed that grp94 is released from baby hamster kidney (BHK-21) cells into a serum-free medium. The exit of grp94 into the medium was not related to the protein discharge due to cell death and was independent of de novo protein synthesis. The treatment of cells with brefeldin A and monensin, the inhibitors of the classical pathway of protein secretion, did not decrease the extracellular level of grp94, indicating that the discharge of grp94 from cells does not occur through the ER/Golgi-dependent pathway. Exosomes, membrane vesicles secreted by several cell types, were not involved in the release of grp94 from cells. Methyl-β-cyclodextrin, a substance that disrupts the lipid raft organization, considerably reduced the extracellular level of grp94, indicating that lipid rafts are involved in the liberation of grp94 from BHK-21 cells. The results suggest that BHK-21 cells release grp94 into the serum-free medium via the nonclassical secretory pathway in which lipid rafts play an important role. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.15/16) and glial proteins in PTZ-treated rat brain regions, and the suppressive effect of MK-801, a non-competitive NMDA receptor antagonist, pretreatment for their proteins. The activity of POP significantly decreased in the hippocampus at 30min and 3h, and in the frontal cortex at 3h after PTZ treatment, and pretreatment with MK-801 recovered the activity in the cortex at 3h. The activity of EP 24.15/16 significantly decreased in the hippocampus at 3h and 1 day, and in the cortex at 3h after the PTZ administration, whereas pretreatment with MK-801 recovered the change of the activity. The Western blot analysis of EP 24.15 showed significant decrease of the protein level in the hippocampus 3h after the PTZ treatment, whereas pretreatment with MK-801 recovered. The expression of GFAP and CD11b immunohistochemically increased in the hippocampus of the PTZ-treated rat as compared with controls. Pretreatment with MK-801 also recovered the GFAP and CD11b expression. These data suggest that PTZ-induced seizures of the rats cause indirect activation of glutamate NMDA receptors, then decrease POP and EP 24.15/16 enzyme activities and EP 24.15 immunoreactivity in the neuronal cells of the hippocampal formation. We speculate that changes of those peptidases in the brain may be related to the levels of the neuropeptides regulating PTZ-induced seizures.  相似文献   

9.
Steer D  Lew R  Perlmutter P  Smith AI  Aguilar MI 《Biochemistry》2002,41(35):10819-10826
The enzyme EC 3.4.24.15 (EP 24.15) is a zinc metalloendopeptidase whose precise function in vivo remains unknown but is thought to participate in the regulated metabolism of a number of specific neuropeptides. The lack of stable and selective inhibitors has hindered the determination of the exact function of EP 24.15. Of the limited number of EP 24.15 inhibitors that have been developed, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but it is unstable in vivo due to cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). This cleavage by EP 24.11 generates a potent inhibitor of angiotensin converting enzyme, thereby limiting the use of CFP for in vivo studies. To develop specific inhibitors of EP 24.15 that are resistant to in vitro and potentially in vivo proteolysis by EP 24.11, this study incorporated beta-amino acids replacing the Ala-Tyr scissile alpha-amino acids of CFP. Both C2 and C3 substituted beta-amino acids were synthesized and substituted at the EP 24.11 scissile Ala-Tyr bond. Significant EP 24.15 inhibitory activity was observed with some of the beta-amino acid containing analogues. Moreover, binding to EP 24.11 was eliminated, thus rendering all analogues containing beta-amino acids resistant to degradation by EP 24.11. Selective inhibition of either EP 24.15 or EP 24.16 was also observed with some analogues. The results demonstrated the use of beta-amino acids in the design of inhibitors of EP 24.15 and EP 24.16 with K(i)'s in the low micromolar range. At the same time, these analogues were resistant to cleavage by the related metalloendopeptidase EP 24.11, in contrast to the alpha-amino acid based parent peptide. This study has therefore clearly shown the potential of beta-amino acids in the design of stable enzyme inhibitors and their use in generating molecules with selectivity between closely related enzymes.  相似文献   

10.
Endopeptidase EC 3.4.24.15 (EP 24.15) is a thermolysin-like metalloendopeptidase which is expressed widely throughout the body, with the highest concentrations in the brain, pituitary and testis. While the precise role of EP 24.15 remains unknown, it is thought to participate in the regulated metabolism of a number of specific neuropeptides. Of the limited number of inhibitors described for EP 24.15, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-amino benzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but is unstable in vivo due to its cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). The cpp-Ala-Ala N-terminal product of this cleavage is a potent inhibitor of angiotensin converting enzyme, which further limits the use of CFP in vivo. To generate specific inhibitors of EP 24.15 that are resistant to in vivo proteolysis by EP 24.11, beta-amino acids have been incorporated into the structure of CFP. We have prepared racemic mixtures of beta-amino acids containing proteogenic side chains, which are 9-fluorenylmethoxycarbonyl (Fmoc)-protected, and several analogues of CFP containing beta-amino acids have been synthesized by solid phase peptide synthesis. The results of stability and inhibitory studies of these new analogues show that the incorporation of beta-amino acids adjacent to the scissile bond can indeed stabilize the peptides against cleavage by EP 24.11 and still inhibit EP 24.15. The results obtained in these studies demonstrate the potential of these amino acids in the synthesis of peptidomimetics and in the design of new stable and specific therapeutics.  相似文献   

11.
Glucose‐regulated protein 94 (grp94) is a major component of the endoplasmic reticulum (ER) lumen of eukaryotic cells. We showed that grp94 is released from baby hamster kidney (BHK‐21) cells into a serum‐free medium. The exit of grp94 into the medium was not related to the protein discharge due to cell death and was independent of de novo protein synthesis. The treatment of cells with brefeldin A and monensin, the inhibitors of the classical pathway of protein secretion, did not decrease the extracellular level of grp94, indicating that the discharge of grp94 from cells does not occur through the ER/Golgi–dependent pathway. Exosomes, membrane vesicles secreted by several cell types, were not involved in the release of grp94 from cells. Methyl‐β‐cyclodextrin, a substance that disrupts the lipid raft organization, considerably reduced the extracellular level of grp94, indicating that lipid rafts are involved in the liberation of grp94 from BHK‐21 cells. The results suggest that BHK‐21 cells release grp94 into the serum‐free medium via the nonclassical secretory pathway in which lipid rafts play an important role. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The zinc metalloendopeptidase EC3.4.24.15 [EP24.15, thimet oligopeptidase], a neuropeptide processing enzyme, is central to the formation and degradation of many bioactive peptides in the neural proteome, and is highly expressed in normal prostate. EP24.15 actions are increased in androgen-dependent prostate cancer compared to androgen-independent; augmented by androgen treatment, and inhibited by clinical GnRH analogs. The "neural" prostate includes: neuropeptides, cognate receptors and processing enzymes regulating signaling of peptide-mediated neural inputs.  相似文献   

13.
Endopeptidase EC 3.4.24.15 (EP24.15) is a zinc metalloendopeptidase that is broadly distributed within the brain, pituitary, and gonads. Its substrate specificity includes a number of physiologically important neuropeptides such as neurotensin, bradykinin, and gonadotropin-releasing hormone, the principal regulatory peptide for reproduction. In studying the structure and function of EP24.15, we have employed in vitro mutagenesis and subsequent protein expression to genetically dissect the enzyme and allow us to glean insight into the mechanism of substrate binding and catalysis. Comparison of the sequence of EP24.15 with bacterial homologues previously solved by x-ray crystallography and used as models for mammalian metalloendopeptidases, indicates conserved residues. The active site of EP24.15 exhibits an HEXXH motif, a common feature of zinc metalloenzymes. Mutations have confirmed the importance, for binding and catalysis, of the residues (His473, Glu474, and His477) within this motif. A third putative metal ligand, presumed to coordinate directly to the active site zinc ion in concert with His473 and His477, has been identified as Glu502. Conservative alterations to these residues drastically reduces enzymatic activity against both a putative physiological substrate and a synthetic quenched fluorescent substrate as well as binding of the specific active site-directed inhibitor, N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, the binding of which we have shown to be dependent upon the presence, and possibly coordination, of the active site zinc ion. These studies contribute to a more complete understanding of the catalytic mechanism of EP24.15 and will aid in rational design of inhibitors and pharmacological agents for this class of enzymes.  相似文献   

14.
Abstract: Several neuropeptides, including neurotensin, somatostatin, bradykinin, angiotensin II, substance P, and luteinizing hormone-releasing hormone but not vasopressin and oxytocin, were actively metabolized through proteolytic degradation by cultivated astrocytes obtained from rat cerebral cortex. Because phenanthroline was an effective degradation inhibitor, metalloproteases were responsible for neuropeptide fragmentation. Neurotensin was cleaved by astrocytes at the Pro10-Tyr11 and Arg8- Arg9 bonds, whereas somatostatin was cleaved at the Phe6-Phe7 and Thr10-Phe11 bonds. These cleavage sites have been found previously with endopeptidases 24.16 and 24.15 purified from rat brain. Addition of specific inhibitors of these proteases, the dipeptide Pro-He and N -[1-( RS )-carboxy-3-phenylpropyl]-Ala-Ala-Phe-4-aminobenzoate, significantly reduced the generation of the above neuropeptide fragments by astrocytes. The presence of endopeptidases 24.16 and 24.15 in homogenates of astrocytes could also be demonstrated by chromatographic separations of supernatant solubilized cell preparations. Proteolytic activity for neurotensin eluted after both gel and hydroxyapatite chromatography at the same positions as found for purified endopeptidase 24.16 or 24.15. In incubation experiments or in chromatographic separations no phosphoramidon-sensitive endopeptidase 24.11 (enkephalinase) or captopril-sensitive peptidyl dipeptidase A (angiotensin-converting enzyme) could be detected in cultivated astrocytes. Because astrocytes embrace the neuronal synapses where neuropeptides are released, we presume that the endopeptidases 24.16 and 24.15 on astrocytes are strategically located to contribute significantly to the inactivation of neurotensin, somatostatin, and other neuropeptides in the brain.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity but the underlying signaling mechanisms remain unknown. Here, we show that BDNF rapidly recruits full-length TrkB (TrkB-FL) receptor into cholesterol-rich lipid rafts from nonraft regions of neuronal plasma membranes. Translocation of TrkB-FL was blocked by Trk inhibitors, suggesting a role of TrkB tyrosine kinase in the translocation. Disruption of lipid rafts by depleting cholesterol from cell surface blocked the ligand-induced translocation. Moreover, disruption of lipid rafts prevented potentiating effects of BDNF on transmitter release in cultured neurons and synaptic response to tetanus in hippocampal slices. In contrast, lipid rafts are not required for BDNF regulation of neuronal survival. Thus, ligand-induced TrkB translocation into lipid rafts may represent a signaling mechanism selective for synaptic modulation by BDNF in the central nervous system.  相似文献   

16.

Background

Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination.

Methodology/Principal Findings

Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts.

Conclusions/Significance

Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likely reflect a general physiological phenomenon, occurring in many tumors.  相似文献   

17.
Endothelial cells (ECs) release ATP in response to shear stress, a mechanical force generated by blood flow, and the ATP released modulates EC functions through activation of purinoceptors. The molecular mechanism of the shear stress-induced ATP release, however, has not been fully elucidated. In this study, we have demonstrated that cell surface ATP synthase is involved in shear stress-induced ATP release. Immunofluorescence staining of human pulmonary arterial ECs (HPAECs) showed that cell surface ATP synthase is distributed in lipid rafts and co-localized with caveolin-1, a marker protein of caveolae. Immunoprecipitation indicated that cell surface ATP synthase and caveolin-1 are physically associated. Measurement of the extracellular metabolism of [(3)H]ADP confirmed that cell surface ATP synthase is active in ATP generation. When exposed to shear stress, HPAECs released ATP in a dose-dependent manner, and the ATP release was markedly suppressed by the membrane-impermeable ATP synthase inhibitors angiostatin and piceatannol and by an anti-ATP synthase antibody. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) disrupted lipid rafts and abolished co-localization of ATP synthase with caveolin-1, which resulted in a marked reduction in shear stress-induced ATP release. Pretreatment of the cells with cholesterol prevented these effects of MbetaCD. Downregulation of caveolin-1 expression by transfection of caveolin-1 siRNA also markedly suppressed ATP-releasing responses to shear stress. Neither MbetaCD, MbetaCD plus cholesterol, nor caveolin-1 siRNA had any effect on the amount of cell surface ATP synthase. These results suggest that the localization and targeting of ATP synthase to caveolae/lipid rafts is critical for shear stress-induced ATP release by HPAECs.  相似文献   

18.
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.  相似文献   

19.
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) and neurolysin (EC 3.4.24.16; EP24.16) are closely related enzymes involved in the metabolic inactivation of bioactive peptides. Both of these enzymes were previously shown to be secreted from a variety of cell types, although their primary sequence lacks a signal peptide. To investigate the mechanisms responsible for this secretion, we examined by confocal microscopy the subcellular localization of these two enzymes in the neuroendocrine cell line AtT20. Both EP24.15 and EP24.16 were found by immunohistochemistry to be abundantly expressed in AtT20 cells. Western blotting experiments confirmed that the immunoreactivity detected in the soma of these cells corresponded to previously cloned isoforms of the enzymes. At the subcellular level, both enzymes colocalized extensively with the integral trans-Golgi network protein, syntaxin-6, in the juxtanuclear region. In addition, both EP24.15 and EP24.16 were found within small vesicular organelles distributed throughout the cell body. Some, but not all, of these organelles also stained positively for ACTH. These results demonstrate that both EP24.15 and EP24.16 are present within the classical secretory pathway. Their colocalization with ACTH further suggests that they may be targeted to the regulated secretory pathway, even in the absence of a signal peptide.  相似文献   

20.
Membrane microdomains (lipid rafts) are enriched in selected signaling molecules and may compartmentalize receptor-mediated signals. Here, we report that in primary human B lymphocytes and in Ramos B cells B cell receptor (BCR) stimulation induces rapid and transient redistribution of a subset of engaged BCRs to lipid rafts and phosphorylation of raft-associated tyrosine kinase substrates. Cholesterol sequestration disrupted the lipid rafts, preventing BCR redistribution, but did not inhibit tyrosine kinase activation or phosphorylation of mitogen-activated protein kinase/extracellular regulated kinase. However, raft disruption enhanced the release of calcium from intracellular stores, suggesting that rafts may sequester early signaling events that down-regulate calcium flux. Consistent with this, BCR stimulation induced rapid and transient translocation of the Src homology 2 domain-containing inositol phosphatase, SHIP, into lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号