首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

2.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

3.
Previous studies have shown that very low density lipoproteins (VLDL) from patients with Tangier disease are less effective as a substrate for human milk lipoprotein lipase (LPL) than VLDL from normal controls as assessed by measuring the first order rate constant (k1) of triglyceride hydrolysis. Tangier VLDL also has a higher content of apolipoprotein (apo) A-II than normal VLDL. To explore the possible relationship between the relatively high concentration of apoA-II in VLDL and low k1 values, Tangier VLDL were fractionated on an anti-apoA-II immunosorber. The retained fraction contained a newly identified triglyceride-rich lipoprotein characterized by the presence of apolipoproteins A-II, B, C-I, C-II, C-III, D, and E (LP-A-II:B:C:D:E or LP-A-II:B complex), whereas the unretained fraction consisted of previously identified triglyceride-rich apoB-containing lipoproteins free of apoA-II. In VLDL from patients with Tangier disease or type V hyperlipoproteinemia, the LP-A-II:B complex accounted for 70-90% and 25-70% of the total apoB content, respectively. The LP-A-II:B complexes had similar lipid and apolipoprotein composition; they were poor substrates for LPL as indicated by their low k1 values (0.014-0.016 min-1). In contrast, the apoA-II-free lipoproteins present in unretained fractions were effective substrates for LPL with k1 values equal to or greater than 0.0313 min-1. These results indicate that triglyceride-rich lipoproteins consist of several apoB-containing lipoproteins, including the LP-A-II:B complex, and that lipoprotein particles of similar size and density but distinct apolipoprotein composition also possess distinct metabolic properties.  相似文献   

4.
Two populations of high-density lipoprotein (HDL) particles exist in human plasma. Both contain apolipoprotein (apo) A-I, but only one contains apo A-II: Lp(AI w AII) and Lp(AI w/o AII). To study the extent of interaction between these particles, apo B-free plasma prepared by the selective removal of apo B-containing lipoproteins (LpB) from the plasma of three normolipidemic (NL) subjects and whole plasma from two patients with abetalipoproteinemia (ABL) were incubated at 37 degrees C for 24 h. Apo B-free plasma samples were used to avoid lipid-exchange between HDL and LpB. Lp(AI w AII) and Lp(AI w/o AII) were isolated from each apo B-free plasma sample before and after incubation and their protein and lipid contents quantified. Before incubation, ABL plasma had reduced levels of Lp(AI w AII) and Lp(AI w/o AII), (40% and 70% of normals, respectively). Compared to the HDL of apo B-free NL plasma, ABL HDL had higher relative contents of free cholesterol, phospholipid and total lipid, and contained more particles with apparent hydrated Stokes diameter in the 9.2-17.0 nm region. These differences were particularly pronounced in particles without apo A-II. Despite their differences, the total cholesterol contents of Lp(AI w AII) increased, while that of Lp(AI w/o AII) decreased in all five plasma samples and the amount of apo A-I in Lp(AI w AII) increased by 6-8 mg/dl in four during the incubation. These compositional changes were accompanied by a relative reduction of particles in the 7.0-8.2 nm Stokes diameter size region and an increase of particles in the 9.2-11.2 nm region. These data are consistent with intravascular modulation between HDL particles with and without apo A-II. The observed increase in apo A-II-associated cholesterol and apo A-I, could involve either the transfer of cholesterol and apo A-I from particles without apo A-II to those with A-II, or the transfer of apo A-II from Lp(AI w AII) to Lp(AI w/o AII). The exact mechanism and direction of the transfer remain to be determined.  相似文献   

5.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

6.
Interaction between high density lipoproteins (HDL) and liposomes results in both a structural modification of HDL and the generation of new pre-β HDL-like particles. Here, phosphatidylcholine liposomes and human HDL were incubated at liposomal phospholipid/HDL phospholipid (L-PL/HDL-PL) ratios of 1:1, 3:1 and 5:1 with a subsequent assessment of the distribution of apolipoprotein (apo) A-I, apo A-II, free cholesterol (FC) and PL between newly generated pre-β mobility lipoproteins and non-disrupted liposomes. Both at L-PL/HDL-PL ratios of 3:1 and 5:1 the fraction of liposomal-derived PL associated with pre-β fraction was significantly higher than those accepted by α-HDL. We found that 78% of apo A-I released from HDL was incorporated into pre-β mobility fraction. The relative contents of PL and apo A-I in pre-β fraction were constant irrespective of the initial L-PL/HDL-PL ratio in the incubation mixture and accounted for approximately 83 and 11%, respectively. Apo A-II was detached from HDL to a similar extent as apo A-I and distributed evenly between pre-β fraction and non-disrupted liposomes. Apo A-II constituted approximately 1%, by weight, in these fractions at all L-PL/HDL-PL ratios investigated. It corresponded approximately to 10% of pre-β fraction protein mass. Both liposomes and pre-β fraction accepted comparable amounts of FC released from HDL. This data indicated that during the interaction between human HDL and phosphatidylcholine liposome apo A-II participates both in structural modification of liposomes and in the generation of pre-β mobility fraction of constant content of PL, apo A-I and apo A-II. Involvement of apo A-II in HDL–liposome interaction may influence the anti-atherogenic properties of liposomes.  相似文献   

7.
The methods for isolation of pure apolipoproteins A-I, A-II and E from the blood plasma of donors for preparation of monospecific rabbit antisera against these apolipoproteins and their estimation in human blood plasma using immunoelectrophoresis are described. It was found that the average content of apolipoprotein A-I (apo A-I) in the blood plasma of healthy males is 126.6 mg%, that of apolipoprotein A-II (apo A-II) is 56.8 mg%, that of apolipoprotein E (apo E) is 10.2 mg%. The apo A-I content in blood plasma is increased in hyper-alpha-lipoproteinemic patients and is decreased in hypo-alpha-lipoproteinemic ones, i. e. there is a direct relationship between the changes in concentration of high density lipoproteins (HDL) and apo A-I. The concentration of apo A-II in dis-alpha-lipoproteinemias varies within a narrow range. A considerable increase of the alpha-cholesterol/apo A-I ratio suggesting an increased capacity of HDL to transport cholesterol in hyper-alpha-lipoproteinemic patients is observed. There exists an indirect correlation between the changes in the contents of apo A-I and apo E in dis-alpha-lipoproteinemic patients.  相似文献   

8.
High density lipoproteins (HDL) from 14 patients with obstructive jaundice were examined by gradient gel electrophoresis to determine the effect of obstruction on particle size distribution. HDL from 7 of these patients were fractionated by gel permeation chromatography and further characterized by electron microscopy, SDS gel electrophoresis, apolipoprotein A-I and apolipoprotein A-II immunoturbidimetry, and analysis of chemical composition. In addition, lecithin:cholesterol acyltransferase (LCAT) activity was measured and correlated with plasma apolipoprotein A-I concentration and particle size distribution. HDL were abnormal in all patients regardless of severity, cause, or duration of obstruction. The major HDL subfraction in normal subjects, HDL3a (radius 4.1-4.3 nm) was either absent or considerably diminished, and HDL2b (radius 5.3 nm) was also frequently absent. Very small particles comparable in size to normal HDL3c (radius 3.8 nm) were prominent. In patients with a bilirubin concentration greater than 250 mumol/l, normal HDL had totally disappeared and were replaced by large discoidal particles of radius 8.5 nm and small spherical particles of radius 3.6-3.7 nm. Both populations of particles were markedly depleted of cholesteryl ester and enriched in free cholesterol and phospholipid. The discoidal particles were rich in apolipoproteins E, A-I, A-II, and C, while the small spherical particles contained predominantly apolipoprotein A-I. LCAT activity was diminished in all subjects to 8-54% of normal, and was strongly positively correlated (r = 0.91 P less than 0.05) with plasma apolipoprotein A-I levels.  相似文献   

9.
C Talussot  G Ponsin 《Biochimie》1991,73(9):1173-1178
Recent reports have shown that apolipoprotein A-I (apo A-I), the major protein of high density lipoprotein (HDL) may exist in different conformational states. We studied the effects of apolipoprotein A-II and/or cholesterol on the conformation of apo A-I in reassembled HDL. Analysis of tryptophan fluorescence quenching in the presence of iodine suggested that cholesterol increased the number of apo A-I tryptophan residues accessible to the aqueous phase, but decreased their mean degree of hydration. These observations cannot be totally explained on the basis of the effect of cholesterol on phospholipid viscosity as determined by fluorescence anisotropy of diphenyl hexatriene. We did not observe any effect of apo A-II on the conformation of apo A-I.  相似文献   

10.
Plasma HDL can be classified according to their apolipoprotein content into at least two types of lipoprotein particles: lipoproteins containing both apo A-I and apo A-II (LP A-I/A-II) and lipoproteins with apo A-I but without apo A-II (LP A-I). LP A-I and LP A-I/A-II were isolated by immuno-affinity chromatography. LP A-I has a higher cholesterol content and less protein compared to LP A-I/A-II. The average particle mass of LP A-I is higher (379 kDa) than the average particle weight of LP A-I/A-II (269 kDa). The binding of 125I-LP A-I to HepG2 cells at 4 degrees C, as well as the uptake of [3H]cholesteryl ether-labelled LP A-I by HepG2 cells at 37 degrees C, was significantly higher than the binding and uptake of LP A-I/A-II. It is likely that both binding and uptake are mediated by apo A-I. Our results do not provide evidence in favor of a specific role for apo A-II in the binding and uptake of HDL by HepG2 cells.  相似文献   

11.
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.  相似文献   

12.
To determine the effect of oxidative damage to lipid-bound apolipoprotein A-I (apo A-I) on its structure and stability that might be related to previously observed functional disorders of oxidized apo A-I in high density lipoproteins (HDL), we prepared homogeneous reconstituted HDL (rHDL) particles containing unoxidized apo A-I and its commonly occurring oxidized form (Met-112, 148 bis-sulfoxide). The size of the obtained discoidal rHDL particles ranged from 9.0 to 10.0 nm and did not depend upon the content of the oxidized protein. Using circular dichroism methods, no change in the secondary structure of lipid-bound oxidized apo A-I was found. Isothermal and thermal denaturation experiments showed a significant destabilization of the oxidized protein to denaturation by guanidine hydrochloride or heat. This effect was observed with and without co-reconstituted apolipoprotein A-II. Limited tryptic digestion indicated that the central region of oxidatively damaged apo A-I becomes exposed to proteolysis in the rHDL particles. Implications of these data for apolipoprotein function are discussed.  相似文献   

13.
The effect of apolipoproteins A-I, A-II, C-II, C-III and E on the hydrolysis of phosphatidylcholine and triacylglycerol by hepatic lipase was studied. Hepatic lipase catalyzed phospholipid hydrolysis was 1.8-fold activated by apolipoprotein E while the other apolipoproteins did not affect the hydrolysis by this enzyme. Triacylglycerol hydrolysis by hepatic lipase was 1.5-fold activated by apolipoprotein E while the other apolipoproteins inhibited hepatic lipase. These results suggest that lipoproteins containing apolipoprotein E may be preferred substrates for hepatic lipase.  相似文献   

14.
We have devised a new method for the fractionation of human plasma high density lipoprotein (HDL). The HDL was chromatographed on DEAE-agarose columns using a continuous gradient of 0.06--0.15 M NaCl. The elution pattern obtained showed three phases, each with differing peptide composition. Examination of the three subfraction showed that each contained both apoA-I and apo A-II, but in different proportions. Subfraction 1 contained no apo C-II or C-III-1 and only a trace of apo C-III-2, subfraction 2 contained apo C-II and C-III-1 but no C-III-2, while subfraction 3 contained considerable apo C-III-2 with only traces of apo C-II or C-III-1.  相似文献   

15.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidyl[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipid by apolipoprotein C-III.The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface.  相似文献   

16.
The preparation of discoidal, recombinant HDL (r-HDL) containing various phospholipids, apolipoproteins and a range of concentrations of unesterified cholesterol has been reported by several investigators. The present study describes the preparation of r-HDL containing both apolipoprotein (apo) A-I and apo A-II. r-HDL with 100:1 (mol:mol) egg PC.apo A-I and 0 (Series I), 5 (Series II) or 10 (Series III) mol% unesterified cholesterol were prepared by the cholate dialysis method. The resulting complexes had a Stokes' radius of 4.7 nm and contained two molecules of apo A-I per particle. When the r-HDL (2.0 mg apo A-I) were supplemented with 1.0 mg of apo A-II, one of the apo A-I molecules was replaced by two molecules of apo A-II. This modification was not accompanied by a loss of phospholipid, nor by major change in particle size. The addition of 2.5 or 4.0 mg of apo A-II resulted in the displacement of both apo A-I molecules from a proportion of the r-HDL and the formation of smaller particles (Stokes' radius 3.9 nm), which contained half the original number of egg PC molecules and three molecules of apo A-II. The amount of apo A-I displaced was dependent on the concentration of unesterified cholesterol in the r-HDL: when 2.5 mg of apo A-II was added to the Series I, II and III r-HDL, 44, 60 and 70%, respectively, of the apo A-I was displaced. Addition of 4.0 mg of apo A-II did not promote further displacement of apo A-I from any of the r-HDL. By contrast, the association of apo A-II with r-HDL was independent of the concentration of unesterified cholesterol and was a linear function of the amount of apo A-II which had been added. It is concluded that (1), the structural integrity of egg PC.unesterified cholesterol.apo A-I r-HDL, which contain two molecules of apo A-I, is not affected when one of the apo A-I molecules is replaced by two molecules of apo A-II; (2), when both apo A-I molecules are replaced by apo A-II, small particles which contain three molecules of apo A-II are formed; and (3), the displacement of apo A-I from r-HDL is facilitated by the presence of unesterified cholesterol in the particles.  相似文献   

17.
The purpose of this study was to identify the apolipoprotein A-containing lipoprotein particles produced by HepG2 cells. The apolipoprotein A-containing lipoproteins separated from apolipoprotein B-containing lipoproteins by affinity chromatography of culture medium on concanavalin A were fractionated on an immunosorber with monoclonal antibodies to apolipoprotein A-II. The retained fraction contained apolipoproteins A-I, A-II and E, while the unretained fraction contained apolipoproteins A-I and E. Both fractions were characterized by free cholesterol as the major and triglycerides and cholesterol esters as the minor neutral lipids. Further chromatography of both fractions on an immunosorber with monoclonal antibodies to apolipoprotein A-I showed that 1) apolipoprotein A-II only occurs in association with apolipoprotein A-I, 2) apolipoprotein A-IV is only present as part of a separate lipoprotein family (lipoprotein A-IV), and 3) apolipoprotein E-enriched lipoprotein A-I:A-II and lipoprotein A-I are the main apolipoprotein A-containing lipoproteins secreted by HepG2 cells.  相似文献   

18.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

19.
The extent to which lipid and apolipoprotein (apo) concentrations in tissue fluids are determined by those in plasma in normal humans is not known, as all studies to date have been performed on small numbers of subjects, often with dyslipidemia or lymphedema. Therefore, we quantified lipids, apolipoproteins, high density lipoprotein (HDL) lipids, and non-HDL lipids in prenodal leg lymph from 37 fasted ambulant healthy men. Lymph contained almost no triglycerides, but had higher concentrations of free glycerol than plasma. Unesterified cholesterol (UC), cholesteryl ester (CE), phosphatidylcholine (PC), and sphingomyelin (SPM) concentrations in whole lymph were not significantly correlated with those in plasma. HDL lipids, but not non-HDL lipids, were directly related to those in plasma. Lymph HDLs were enriched in UC. However, as the HDL cholesterol/non-HDL cholesterol ratio in lymph exceeded that in plasma, whole lymph nevertheless had a lower UC/CE ratio than plasma. Lymph also had a significantly higher SPM/PC ratio. The lymph/plasma (L/P) ratios of apolipoproteins were as follows: A-IV > A-I and A-II > C-III and E > B. Comparison with the L/P ratios of seven nonlipoprotein proteins suggested that apoA-IV was predominantly lipid free. Concentrations of apolipoproteins A-II, A-IV, C-III, and E in lymph, but not of apolipoproteins A-I or B, were positively correlated with those in plasma. The L/P ratios of apolipoproteins B, C-III, and E in two subjects with lipoprotein lipase (LPL) deficiency, and of apolipoproteins A-I and A-IV in a subject with lecithin:cholesterol acyltransferase (LCAT) deficiency, were low relative to those in normal subjects. Thus, the concentrations of lipids, apolipoproteins, and lipoproteins in human tissue fluid are determined only in part by their concentrations in plasma. Other factors, including the actions of LPL and LCAT, are at least as important.  相似文献   

20.
Chylomicron apolipoprotein metabolism was studied utilizing chylomicrons isolated from the pleural fluid of a patient with a recurrent chylous pleural effusion. Chylomicrons contained apolipoproteins A-I, A-II, B, C-I, C-II, C-III, D, E, and albumin. Following intravenous injection of [125I] chylomicrons, almost all of the A apolipoprotein radioactivity was recovered in high density lipoproteins, while only a small amount of the B apolipoprotein radioactivity was recovered in low density lipoproteins. These observations indicate that intestinal chylomicron A apolipoproteins serve as precursors for plasma high density lipoprotein A apolipoproteins and only a small fraction of chylomicron apolipoprotein B is metabolized to form low density lipoprotein apolipoprotein B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号