首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied Ca2+ mobilization mediated by the constitutively expressed muscarinic receptor on a subclone of PC-12 cells. The subclone, ACH2, was isolated with a flow cytometer by selection of single cells that exhibited a strong intracellular Ca2+ response to acetylcholine (ACh). Cell to cell heterogeneity of resting Ca2+ levels was markedly reduced in the subclone and homogeneity of the population response was also dramatically improved. ACH2 cells were highly sensitive to ACh and the Ca2+ response in all cells was blocked by muscarinic antagonists. Membranes from ACH2 exhibited muscarinic binding affinities which were not typical of M1, M2, or M3 receptors but were consistent with the profile of the putative m4 receptor. The same percentage of cells responded to ACh whether or not extracellular Ca2+ was reduced with EGTA, but the response was eliminated in all cells by preincubation with pertussis toxin. Thus, the constitutive m4 receptor on ACH2 cells is efficiently coupled to intracellular Ca2+ release by a pertussis toxin-sensitive mechanism. Stimulation of the ACH2 cells by bradykinin (BK) evoked a Ca2+ response in 90% of the cells. Prestimulation with BK diminished the magnitude of the muscarinic Ca2+ response but did not reduce the number of cells which responded to ACh. Inhibition was partially attributed to inhibition of a Ca2+ influx pathway in resting cells. Thus, the signaling mechanism coupled to the m4 muscarinic receptor can be inhibited by signals initiated by the BK receptor.  相似文献   

2.
The cytosolic free Ca2+ concentration ([Ca2+]in) in single cat and bovine adrenal chromaffin cells was measured to determine whether or not there was any correlation between the [Ca2+]in and the catecholamine (CA) secretion caused by muscarinic receptor stimulation. In cat chromaffin cells, methacholine (MCh), a muscarinic agonist, raised [Ca2+]in by activating both Ca2+ influx and intracellular Ca2+ mobilization with an accompanying CA secretion. In bovine cells, MCh elevated [Ca2+]in by mobilizing intracellular Ca2+ but did not cause CA secretion. The MCh-induced rise in [Ca2+]in in cat cells was much higher than that in bovine cells, but when Ca2+ influx was blocked, the rise was reduced, with a concomitant loss of secretion, to a level comparable to that in bovine cells. Intracellular Ca2+ mobilization due to muscarinic stimulation substantially increased secretion from depolarized bovine and cat cells, where a [Ca2+]in elevated above basal values was maintained by a continuous Ca2+ influx. These results show that Ca2+ released from internal stores is not effective in triggering secretion unless Ca2+ continues to enter across the plasma membrane, a conclusion suggesting that secretion depends on [Ca2+]in in a particular region of the cell.  相似文献   

3.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

4.
The secretion of catecholamines and ATP induced by cholinergic agonists and its dependence on extracellular Ca2+ were studied in cultured porcine adrenal chromaffin cells. Both nicotine and methacholine (a selective muscarinic agonist) induced secretion and increases in cytosolic free Ca2+ concentration ([Ca2+]in), although the activation of nicotinic receptors produced responses that were larger than those produced by activation of muscarinic receptors. The secretion and the increase in [Ca2+]in evoked by nicotine were completely dependent on extracellular Ca2+ and were blocked by prior depolarization of the cells with high extracellular K+ levels. In addition, nicotine induced significant 45Ca2+ influx. In contrast, the secretion and the increase in [Ca2+]in evoked by methacholine were partially dependent on extracellular Ca2+; methacholine also induced 45Ca2+ influx. Prior depolarization of the cells with high extracellular K+ levels did not block methacholine-induced secretion. In general, nicotinic responses were mediated by Ca2+ influx through voltage-dependent pathways. In contrast, muscarinic responses were dependent on both Ca2+ influx through an unknown mechanism that could not be inactivated by high K+ concentration-induced depolarization and presumably also intracellular Ca2+ mobilization.  相似文献   

5.
The agonists carbachol (CCh) and bradykinin (BK) and 54 mM KCl (high K+) were among the most potent stimulants of cyclic AMP (cAMP) production in cultured rat sympathetic neurons, measured with the use of a high-fidelity assay developed for small samples. The rise in cAMP evoked by CCh (through muscarinic receptors), BK, and high K+ was inhibited in Ca2(+)-depleted medium (1.3 mM Ca2+ and 2 mM BAPTA or EGTA), which also prevented the sustained rise in [Ca2+]i evoked by each of these stimuli, showing that elevation of cAMP requires extracellular Ca2+ and, possibly, Ca2+ influx. Preliminary results obtained with the novel calmodulin inhibitor CGS 9343B, which blocked the elevation of cAMP, and with the cyclogenase inhibitor indomethacin, which partially blocked the actions of the agonists but not those of high K+, suggest that calmodulin and arachidonate metabolites may be two components of the signaling pathway. In addition to their effects on cAMP metabolism, CCh, muscarine, and BK, but not nicotine, caused a 30-40% decrease in ATP levels. This effect was much greater than that evoked by high K+ and was largely inhibited by CGS 9343B but slightly enhanced in the Ca(+)-depleted medium, showing that agonists are still active in the absence of [Ca2+]o. Thus, agonists that activate phosphoinositide metabolism can also increase cAMP production and substantially deplete cells of ATP. These novel actions may have to be taken into account when the mechanisms by which such agonists regulate cell function are being considered.  相似文献   

6.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

7.
Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated 45Ca2+ from the medium. Ca2+ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca2+ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-mediated functions that reflected some neurotransmitter-sensitive properties of uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the beta-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca2+ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture.  相似文献   

8.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

9.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

10.
We have examined the effects of the muscarinic agonist carbachol on the intracellular free Ca2+ concentration ([Ca2+]i) in primary cultures of neurons from rat forebrain using the Ca2+-sensitive fluorescent dye fura-2. Addition of carbachol increased the [Ca2+]i in approximately 60% of cells studied. Oxotremorine-M, but not pilocarpine, mimicked the effects of carbachol. The response was reduced by 60% on removal of extracellular Ca2+, a finding suggesting that muscarinic receptor activation causes Ca2+ influx in addition to intracellular Ca2+ mobilization. Tetrodotoxin and nitrendipine also significantly reduced the response to carbachol. These studies suggest that the changes in [Ca2+]i produced by activation of muscarinic receptors result in part from mobilization of intracellular Ca2+ and that influx through voltage-sensitive Ca2+ channels also provides a significant contribution to the net [Ca2+]i change observed.  相似文献   

11.
Temporal and spatial changes in the concentration of cytosolic free calcium ([Ca2+]i) in response to a variety of secretagogues have been examined in adrenal chromaffin cells using digital video imaging of fura-2-loaded cells. Depolarization of the cells with high K+ or challenge with nicotine resulted in a rapid and transient elevation of [Ca2+]i beneath the plasma membrane consistent with Ca2+ entry through channels. This was followed by a late phase in which [Ca2+]i rose within the cell interior. Agonists that act through mobilization of inositol phosphates produced an elevation in [Ca2+]i that was most marked in an internal region of the cell presumed to be the site of IP3-sensitive stores. When the same cells were challenged with nicotine or high K+, to trigger Ca2+ entry through voltage-dependent channels, the rise in [Ca2+]i was most prominent in the same localized region of the cells. These results suggest that Ca2+ entry through voltage-dependent channels results in release of Ca2+ from internal stores and that the bulk of the measured rise in [Ca2+]i is not close to the exocytotic sites on the plasma membrane. Analysis of the time courses of changes in [Ca2+]i in response to bradykinin, angiotensin II and muscarinic agonists showed that these agonists produced highly heterogeneous responses in the cell population. This heterogeneity was most marked with muscarinic agonists which in some cells elicited oscillatory changes in [Ca2+]i. Such heterogeneous changes in [Ca2+]i were relatively ineffective in eliciting catecholamine secretion from chromaffin cells. A single large Ca2+ transient, with a component of the rise in [Ca2+]i occurring beneath the plasma membrane, may be the most potent signal for secretion.  相似文献   

12.
In many cell types membrane receptors for hormones or neurotransmitters activate a signal transduction pathway which releases Ca2+ from intracellular Ca2+ stores by the second messenger inositol 1,4,5-trisphosphate. As a consequence store-operated Ca2+ entry (SOCE) becomes activated. In the present study we addressed the question if receptor/agonist binding can modulate Ca2+ entry by mechanisms different from the store-operated one. Therefore SOCE was examined in HEK293 cells microscopically with the fura-2 technique and with patch clamp. We found that maximally preactivated SOCE could, concentration dependently, be reduced up to 80% by the muscarinic agonist acetylcholine when the cytoplasmic Ca2+ concentration was used as a measure. Muscarinic receptors seem to mediate this decrease since atropine blocked the effect completely and cell types without muscarinic receptors (BHK21, CHO) did not show acetylcholine-induced decrease of Ca2+ entry. Moreover expression of muscarinic receptor subtypes M1 and M3 in BHK21 cells established the muscarinic decrease of SOCE. Electrical measurements revealed that the membrane potential of HEK293 cells did not show any response to ACh, excluding that changes of driving forces are responsible for the block of Ca2+ entry. In contrast the electrical current which is responsible for SOCE in HEK293 cells (Ca2+ release-activated Ca2+ current (I(CRAC)) was inhibited (maximally 55%) by 10 microM ACh. From these data we conclude that in HEK293 cells a muscarinic signal transduction pathway exists which decreases the cytoplasmic Ca2+ concentration by an inhibition of I(CRAC). This mechanism may serve as a modulator of Ca2+ entry preventing a Ca2+ overload of the cytoplasm after Ca2+ store depletion.  相似文献   

13.
The relationship between muscarinic receptor activation of phosphoinositide hydrolysis and the sequestration of cell surface muscarinic receptors has been examined for both intact and digitonin-permeabilized human SK-N-SH neuroblastoma cells. Addition of the aminosteroid 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) to intact cells resulted in the inhibition of oxotremorine-M-stimulated inositol phosphate release and of Ca2+ signaling by greater than 75%. In contrast, when phospholipase C was directly activated by the addition of the calcium ionophore ionomycin, inclusion of U-73122 had little inhibitory effect. Addition of U-73122 to intact cells also inhibited the agonist-induced sequestration of cell surface muscarinic receptors and their subsequent down-regulation with an IC50 value (4.1 microM) similar to that observed for inhibition of inositol phosphate release (3.7 microM). In contrast, when oxotremorine-M-stimulated phosphoinositide hydrolysis was inhibited by depletion of extracellular Ca2+, no reduction in the extent of receptor sequestration was observed. When introduced into digitonin-permeabilized cells, U-73122 more markedly inhibited inositol phosphate release elicited by either oxotremorine-M or guanosine-5'-O-(3-thiotriphosphate) than that induced by added Ca2+. Addition of oxotremorine-M to permeabilized cells resulted in muscarinic receptor sequestration and down-regulation. Both the loss of muscarinic acetylcholine receptors and activation of phosphoinositide hydrolysis in permeabilized cells were inhibited by the inclusion of guanosine-5'-O-(2-thiodiphosphate). The results indicate that the agonist-induced sequestration of muscarinic acetylcholine receptor in SK-N-SH cells requires the involvement of a GTP-binding protein but not the production of phosphoinositide-derived second messenger molecules.  相似文献   

14.
The actions of tumor promoters on the coupling of muscarinic receptors to the hydrolysis of inositol lipids and the generation of Ca2+ signals were examined in the human neuroblastoma SH-SY5Y cell line. Pretreatment of SH-SY5Y cells with 50 nM 12-O-tetradecanoylphorbol 13-acetate (TPA) for 5 days resulted in neuronal differentiation, a 28% decrease in both N-[3H]methylscopolamine and [3H]-scopolamine binding, and a significantly larger reduction (48%) in agonist-stimulated 3H-inositol phosphate generation. Whereas mezerein could mimic the effects produced by TPA, the biologically inactive 4 alpha-phorbol 12,13-didecanoate was without effect on both antagonist binding and agonist-stimulated phosphoinositide (PPI) turnover. A decline (approximately 50%) in the agonist-mediated rise in cytoplasmic Ca2+ and a substantial loss of protein kinase C activity also were observed following pretreatment with TPA or mezerein. The ability of fluoride, an agent capable of direct activation of guanine nucleotide binding proteins, to stimulate 3H-inositol phosphate release was significantly reduced in SH-SY5Y cells treated with these agents. Furthermore, pretreatment of SH-SY5Y neuroblastoma cells with TPA or mezerein impaired 3H-inositol phosphate formation induced by the addition of either guanosine 5'-O-(3-thiotriphosphate) or carbamylcholine to digitonin-permeabilized cells, but not that elicited by the addition of 2 mM CaCl2. Although cells cultured in the presence of serum-free media also exhibited neuronal differentiation, no significant alteration in either muscarinic receptor number or agonist-stimulated PPI hydrolysis was observed. The results suggest that TPA and mezerein decrease agonist-stimulated PPI hydrolysis and Ca2+ signaling in SH-SY5Y cells not only by a reduction in muscarinic receptor number but also through an inhibition of guanine nucleotide-stimulated PPI turnover.  相似文献   

15.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

16.
We recently showed that colchicine treatment of rat ventricular myocytes increases the L-type Ca2+ current (I(Ca)) and intracellular Ca2+ concentration ([Ca2+](i)) transients and interferes with adrenergic signaling. These actions were ascribed to adenylyl cyclase (AC) stimulation after G(s) activation by alpha,beta-tubulin. Colchicine depolymerizes microtubules into alpha,beta-tubulin dimers. This study analyzed muscarinic signals in myocytes with intact or depolymerized microtubules. Myocytes were loaded with the Ca2+ indicator fluo 3 and were field stimulated at 1 Hz or voltage clamped. In untreated cells, carbachol (CCh; 1 microM) induced ACh-activated K(+) current [I(K(ACh))], which happens via betagamma-subunits from the activation of G(i). Carbachol also reduced [Ca2+](i) transients and contractions. Once G(i) is activated by muscarinic agonist, the alpha(i)-subunit is released from the betagamma-subunits, but it is silent, and its inhibition of the AC/cAMP cascade, manifested by I(Ca) reduction, is not seen unless AC has been previously activated. In colchicine-treated cells, CCh caused greater reductions of [Ca2+](i) transients and contractions than in untreated cells. The alpha(i)-subunit became effective in signaling through the AC/cAMP cascade and reduced I(Ca) without changing its voltage-dependence. Isoproterenol (Iso) regained its efficacy and reversed I(Ca) inhibition by CCh. Stimulation of I(Ca) by forskolin persisted in colchicine-treated cells when Iso was ineffective. The effect of CCh on I(K(ACh)) was occluded in colchicine-treated cells. Colchicine treatment, per se, may increase I(K(ACh)) by betagamma-subunits released from G(s) to mask this effect of CCh. Microtubules suppress I(Ca) regulation by alpha(i); their disruption releases restraints that unmask muscarinic inhibition of I(Ca). Summarily, colchicine treatment reverses regulation of ventricular excitation-contraction coupling by autonomic agents.  相似文献   

17.
The type I adenylylcyclase which was originally purified and cloned from bovine brain is stimulated by Ca2+ and calmodulin in vitro. Although it has been proposed that this enzyme may couple elevations in intracellular Ca2+ to increases in cAMP in whole cells, this has not been demonstrated in vivo. In this study, the type I adenylylcyclase was expressed in human 293 cells, and the influence of extracellular Ca2+ and Ca2+ ionophore on intracellular cAMP levels was examined. The cAMP levels of control cells were unaffected by Ca2+ and A23187. In contrast, intracellular cAMP in 293 cells expressing type I adenylylcyclase was markedly elevated by addition of A23187 and extracellular Ca2+. In the presence of forskolin, the muscarinic agonist carbachol also increased cAMP in 293 cells expressing the type I adenylylcyclase. These data indicate that the type I adenylylcyclase can be stimulated by Ca2+ in vivo, and that muscarinic agonists may indirectly stimulate the enzyme by increasing intracellular free Ca2+.  相似文献   

18.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

19.
To help elucidate the possible role of phosphatidylinositol in the regulation of membrane permeability to Ca2+, the relationship in the rat parotid gland of phosphatidylinositol turnover to hormone receptor binding and to the hormone-mediated increase in K+ permeability (a Ca2+-dependent phenomenon) was investigated. The concentrations of adrenaline and substance P required to stimulate phosphatidylinositol turnover were found to be similar to those required for the Ca2+-mediated change in K+ permeability and for ligand binding. However, in the case of muscarinic (cholinergic) receptor stimulation, the phosphatidylinositol response was better correlated to the increase in membrane permeability to Ca2+, as determined by the change in K+ permeability, than to receptor occupation. Consistent with this relationship between the phosphatidylinositol response and Ca2+-channel activation were results obtained by simultaneous administration of maximal or submaximal concentrations of muscarinic and alpha-adrenergic agonists. The extent of 32P incorporation when stimulated by maximal concentrations of two agonists did not summate, but, rather, was intermediate between the response of either agonist alone. One interpretation for these observations is that the phosphatidylinositol response may not be related to receptor occupation or activation, but may be involved in the Ca2+-gating mechanism itself.  相似文献   

20.
Hormone-induced Ca2+ mobilization in rat parotid acinar cells is reportedly mediated via an as yet uncharacterized G protein. We have studied the sensitivity to pertussis toxin (PTx) of this signal transduction mechanism. When rats were treated with Ptx (1.3-1.5 micrograms per animal) for 72 h, a 41 kDa membrane protein was ADP-ribosylated. This PTx treatment regimen, also, resulted in a more than 80% block of the ability of the muscarinic agonist carbachol to inhibit beta-adrenergic receptor-stimulated parotid adenylyl cyclase activity. However, cytosolic Ca2+ levels, in response to either carbachol or AIF-4, were comparable in cells prepared from both untreated or PTx-treated rats, when incubated either in the absence or presence of extracellular Ca2+. Further, both the sensitivity of the Ca2+ response to carbachol and the ability of the agonist-sensitive intracellular Ca2+ stores to be refilled by extracellular Ca2+ were unaffected by PTx treatment. Parotid membranes also contained three low-molecular-weight GTP-binding proteins (25, 22 and 18 kDa) which were unaffected by PTx. These results show that there is only one detectable substrate in parotid membranes for a PTx-catalyzed ADP-ribosylation and that hormone-induced Ca2+ mobilization events in parotid acinar cells are not mediated via PTx-sensitive components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号