首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
L-threo-3-Hydroxyaspartate dehydratase (L-threo-3-hydroxyaspartate hydro-lyase), which exhibited specificity for L-threo-3-hydroxyaspartate (K(m)=0.74 mM, V(max)=37.5 micromol min(-1) (mg protein)(-1)) but not for D-threo or D, L-erythro-3-hydroxyaspartate, was purified from a cell-free extract of Pseudomonas sp. T62. The activity of the enzyme was inhibited by hydroxylamine and EDTA, which suggests that pyridoxal 5'-phosphate and divalent cations participate in the enzyme reaction. The NH(2)-terminal amino acid sequence showed significant similarity to the Saccharomyces cerevisiae YKL218c gene product, a hypothetical threonine dehydratase. However, the purified enzyme showed no threonine dehydratase activity.  相似文献   

3.
L Kopelovich  G Wolfe 《Biochemistry》1977,16(16):3721-3726
Whole tRNA preparation obtained from a human cell line (HT-29) of colon carcinoma and purified specific Escherichia coli tRNA were reacted with pyridoxal 5'-phosphate, reduced by sodium borohydride and digested with RNase A and snake venom phosphodiesterase. Two-dimensional chromatography of the pyridoxal 5'-phosphate treated tRNA digest showed that pyridoxal 5'-phosphate binds specifically to GMP, presumably in the form of a Schiff base with the exocyclic amino group of the purine. The reaction of pyridoxal 5'-phosphate with whole tRNA was competitively inhibited by N-acetoxy-2-acetylaminofluorene. This suggests that binding occurred primarily to the G20 base residue at the unpaired region of the dihydrouridine loop (Fujimura et al., 1972). The modification of tRNA by pyridoxal 5'-phosphate resulted in the inhibition, to varying extent (10-80%), of amino acid acceptance in the aminoacyl-tRNA synthetase reaction. Defects in codon recognition by pyridoxal 5'-phosphate modified amino acid acylated tRNAs in the presence of the corresponding guanine-containing polynucleotide triplets were observed by the ribosomal binding assay.  相似文献   

4.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

5.
Mouse ornithine decarboxylase (ODC) was expressed in Escherichia coli and the purified recombinant enzyme used for determination of the binding site for pyridoxal 5'-phosphate and of the residues modified in the inactivation of the enzyme by the enzyme-activated irreversible inhibitor, alpha-difluoromethylornithine (DFMO). The pyridoxal 5'-phosphate binding lysine in mouse ODC was identified as lysine 69 of the mouse sequence by reduction of the purified holoenzyme form with NaB[3H]4 followed by digestion of the carboxymethylated protein with endoproteinase Lys-C, radioactive peptide mapping using reversed-phase high pressure liquid chromatography and gas-phase peptide sequencing. This lysine is contained in the sequence PFYAVKC, which is found in all known ODCs from eukaryotes. The preceding amino acids do not conform to the consensus sequence of SXHK, which contains the pyridoxal 5'-phosphate binding lysine in a number of other decarboxylases including ODCs from E. coli. Using a similar procedure to analyze ODC labeled by reaction with [5-14C]DFMO, it was found that lysine 69 and cysteine 360 formed covalent adducts with the inhibitor. Cysteine 360, which was the major adduct accounting for about 90% of the total labeling, is contained within the sequence -WGPTCDGL(I)D-, which is present in all known eukaryote ODCs. These results provide strong evidence that these two peptides form essential parts of the catalytic site of ODC. Analysis by fast atom bombardment-mass spectrometry of tryptic peptides containing the DFMO-cysteine adduct indicated that the adduct formed in the enzyme was probably the cyclic imine S-(2-(1-pyrroline)methyl)cysteine. This is readily oxidized to S-((2-pyrrole)methyl)cysteine or converted to S-((2-pyrrolidine)methyl)cysteine by NaBH4 reduction. This adduct is consistent with spectral evidence showing that inactivation of the enzyme with DFMO does not entail the formation of a stable adduct between the pyridoxal 5'-phosphate, the enzyme, and the inhibitor.  相似文献   

6.
Characterization of the domain structure of DNA polymerase beta is reported. Large scale overproduction of the rat protein in Escherichia coli was achieved, and the purified recombinant protein was verified by sequencing tryptic peptides. This protein is both a single-stranded DNA binding protein and a DNA polymerase consisting of one polypeptide chain of 334 amino acids. As revealed by controlled proteolysis experiments, the protein is organized in two relatively protease-resistant segments linked by a short protease-sensitive region. One of these protease-resistant segments represents the NH2-terminal 20% of the protein. This NH2-terminal domain (of about 75 residues) has strong affinity for single-stranded nucleic acids. The other protease-resistant segment, representing the COOH-terminal domain of approximately 250 residues, does not bind to nucleic acids. Neither domain, tested as purified proteins, has substantial DNA polymerase activity. The results suggest that the NH2-terminal domain is principally responsible for the template binding activity of the intact protein.  相似文献   

7.
The NH(2)-terminal amino acid sequence of L-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62 showed significant similarity to that of the SRY1 gene product of Saccharomyces cerevisiae (serine racemase in yeast). SRY1 was cloned and expressed in Escherichia coli, and the gene product was purified and partially characterized. The SRY1 gene product exhibited dehydratase activity specific for L-threo-3-hydroxyaspartate (K(m)=3.9 mM, V(max)=110 micromol min(-1) (mg protein)(-1)) but not for D-threo- or DL-erythro-3-hydroxyaspartate. The purified enzyme showed no detectable serine racemase activity. The activity of the enzyme was inhibited by hydroxylamine and EDTA, and was activated by Mg(2+), Ca(2+), and Mn(2+), suggesting that pyridoxal-5'-phosphate and divalent cations participate in the enzyme reaction. Gene disruption and overexpression indicated that SRY1 is responsible for the 3-hydroxyaspartate resistance of S. cerevisiae. To our knowledge, this is the first report of 3-hydroxyaspartate dehydratase activity in eukaryotic cells.  相似文献   

8.
The hemA gene encoding 5-aminolevulinic acid synthase (ALAS) was cloned from the genomic DNA of photosynthetic bacterium Rhodopseudomonas palustris KUGB306. The deduced protein (ALAS) of this gene contained 409 amino acids. The hemA gene was subcloned into an expression vector pGEX-KG and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase (GST) in Escherichia coli BL21. The recombinant ALAS was purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose 4B resin and cleavage of the purified fusion protein by thrombin protease. The optimum pH and temperature of the recombinant ALAS was found to be at pH 7.5-8.0 and 35-40 degrees C, respectively. The Km value of the enzyme was 2.01 mM for glycine and 49.55 microM for succinyl-CoA. The enzyme activity was strongly inhibited by Pb2+, Fe2+, Co2+, Cu2+, and Zn2+ at 1 mM, but slightly affected by Mg2+ and K+. The recombinant ALAS required pyridoxal 5'-phosphate (PLP) as a cofactor for catalysis. Removal of this cofactor led to complete loss of the activity. Ultraviolet-visible spectroscopy with the ALAS suggested the presence of an aldimine linkage between the enzyme and PLP.  相似文献   

9.
10.
The binding of pyridoxal 5'-phosphate (PLP) to bovine serum albumin (BSA), and to large BSA fragments obtained after proteolytic hydrolysis, was investigated in order to study the structure of these fragments in relation to the albumin structure itself, and to get information about the PLP binding sites on albumin. From absorbance and circular dichroism spectra, combined with peptide mapping of the tryptic digests of the reduced PLP-protein complexes, it could be concluded that the primary binding site is localized with the NH2-terminal part of the albumin molecule. The COOH-terminal part contains one or more secondary sites. It appeared that in albumin and in the largest NH2-terminal fragment, the environment of the primary binding site is rather apolar in character. However, in the smallest NH2-terminal fragment this site is more exposed to the solvent. This suggests that the part of the peptide chain which is not common in both fragments has a stabilizing effect on the structure around the primary binding site.  相似文献   

11.
Arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19) from Mycobacterium smegmatis, TMC 1546 has been purified to homogeneity. The enzyme has a molecular mass of 232 kDa and a subunit mass of 58.9 kDa. The enzyme from mycobacteria is totally dependent on pyridoxal 5'-phosphate for its activity at its optimal pH and, unlike that from Escherichia coli, Mg2+ does not play an active role in the enzyme conformation. The enzyme is specific for arginine (Km = 1.6 mM). The holoenzyme is completely resolved in dialysis against hydroxylamine. Reconstitution of the apoenzyme with pyridoxal 5'-phosphate shows sigmoidal binding characteristics at pH 8.4 with a Hill coefficient of 2.77, whereas at pH 6.2 the binding is hyperbolic in nature. The kinetics of reconstitution at pH 8.4 are apparently sigmoidal, indicating the occurrence of two binding types of differing strengths. A low-affinity (Kd = 22.5 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations and a high-affinity (Kd = 3.0 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations. The restoration of full activity occurred in parallel with the tight binding (high affinity) of pyridoxal 5'-phosphate to the apoenzyme. Along with these characteristics, spectral analyses of holoenzyme and apoenzyme at pH 8.4 and pH 6.2 indicate a pH-dependent modulation of coenzyme function. Based on the pH-dependent changes in the polarity of the active-site environment, pyridoxal 5'-phosphate forms different Schiff-base tautomers at pH 8.4 and pH 6.2 with absorption maxima at 415 nm and 333 nm, respectively. These separate forms of Schiff-base confer different catalytic efficiencies to the enzyme.  相似文献   

12.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

13.
Lipase modulator protein (LimL) of Pseudomonas sp. strain 109.   总被引:1,自引:0,他引:1       下载免费PDF全文
Plasmids containing a Pseudomonas sp. strain 109 extracellular lipase gene (lipL) lacking NH2-terminal sequence and a lipase modulator gene (limL) lacking the NH2-terminal hydrophobic region were constructed and expressed independently in Escherichia coli by using the T7 promoter expression vector system. Recombinant LipL (rLipL) was produced as inclusion bodies, whereas recombinant LimL (rLimL) was present as a soluble protein. During in vitro renaturation of the purified rLipL inclusion bodies after they had been dissolved in 8 M urea, addition of rLimL was essential to solubilize and modulate rLipL. The solubility and activity of rLipL were influenced by the rLimL/rLipL molar ratio; the highest level of solubility was obtained at an rLimL/rLipL ratio of 4:5, whereas the highest activity level was obtained at an rLimL/rLipL ratio of 4:1. After renaturation, rLipL and rLimL were coprecipitated with anti-rLipL antibody, indicating the formation of an rLipL-rLimL complex. Activity of the native lipase purified from Pseudomonas sp. strain 109 was also inhibited by rLimL. By Western blotting (immunoblotting) with anti-rLimL antibody, native LimL was detected in Pseudomonas cells solubilized by sarcosyl treatment. LimL was purified from Pseudomonas sp. strain 109, and the NH2-terminal amino acid sequence was determined to be NH2-Leu-Glu-Pro-Ser-Pro-Ala-Pro-. We propose that to prevent membrane degradation, LimL weakens lipase activity inside the cell, especially in the periplasm, in addition to modulating lipase folding.  相似文献   

14.
A Basu  M J Modak 《Biochemistry》1987,26(6):1704-1709
We have labeled the large fragment of Escherichia coli DNA polymerase I (Pol I) with pyridoxal 5'-phosphate, a substrate binding site directed reagent for DNA polymerases [Modak, M. J. (1976) Biochemistry 15, 3620-3626]. A covalent attachment of pyridoxal phosphate to Pol I results in the loss of substrate binding as well as the polymerase activity. The inactivation was found to be strictly dependent on the presence of a divalent metal ion. Four moles of pyridoxal phosphate was found to react per mole of the enzyme, while in the presence of substrate deoxynucleoside triphosphate only 3 mol of pyridoxal phosphate was bound. To identify the substrate-protected site on the enzyme, tryptic peptides from enzyme labeled with pyridoxal phosphate and tritiated borohydride, in the presence and absence of substrate, were resolved on a C-18 reverse-phase column. A single peptide containing the substrate-protected site was identified and further purified. The amino acid composition and sequence analysis of this peptide revealed it to span residues 756-775 in the primary acid sequence of Pol I. Lys-758 of this sequence was found to be the site of the pyridoxal phosphate reaction. It is therefore concluded that Lys-758 is the site of binding for the metal chelate form of nucleotide substrates in E. coli DNA polymerase I.  相似文献   

15.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

16.
17.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

18.
Fatty acid synthase from the uropygial gland of goose was inhibited by treatment with pyridoxal 5'-phosphate by selectively modifying a lysine residue at the NADPH binding site of the enoyl reductase domain (A. J. Poulose and P. E. Kolattukudy (1980) Arch. Biochem. Biophys. 201, 313-321). Distribution of radioactivity in tryptic peptides generated from the synthase treated with pyridoxal 5'-phosphate/NaB3H4 in the presence and absence of 2'-monophosphoadenosine-5'-diphosphoribose, which protects the enzyme from inactivation by pyridoxal phosphate, showed that modification of one specific peptide was prevented by the protector. This peptide was purified by a combination of Sephadex G-25 column chromatography, anion-exchange chromatography, and high-performance liquid chromatography. The primary structure of this peptide is Val-Phe-Thr-Thr-Val-Gly-Ser-Ala-Glu-Lys(Pxy)-Arg.  相似文献   

19.
目的:重组表达抗PAI抑制作用的t-PA突变体,经诱导表达、复性、纯化后进行生物学活性和酶动力学分析。方法:构建pBV220-tpa重组表达质粒,经DNA测序确认后,转化至大肠杆菌DH5a,温控诱导表达,凝胶过滤法对包涵体蛋白进行初步纯化,复性后,过刺桐胰蛋白酶亲和层析柱纯化,酶动力学分析其活性。结果:测序证实,t-PA突变体的DNA序列正确,表达蛋白占总菌体蛋白的30%,经纯化后纯度达90%以上,比活性为7.0×108IU/mg,t-PA突变体与PAI-1反应后,其活性未受到抑制。t-PA突变体酶的米氏常数Km为0.5298,最大水解速度Vmax为0.0595。结论:经生物学活性测定,表达蛋白能够明显抵抗PAI的抑制作用,并具有良好的生物活性,该突变体有可能成为用量更少、疗效更佳的新型溶栓药物。  相似文献   

20.
Rat liver tyrosine aminotransferase was purified by chromatography on CM-Sephadex C-50 and DEAE-cellulose, (NH4)2SO4 fractionation and gel filtration on Sephadex G-200. Livers from 400 rats can be easily worked up by this procedure. Furthermore, this purification method has the advantage that hepatic tryptophan 2,3-dioxygenase, which, like tyrosine aminotransferase, is induced by glucocorticosteroids, can be purified from the same homogenate. Tyrosine aminotransferase purified by this method was shown to be specific for 2-oxoglutarate. Its subunits have a molecular weight of 45 000. The following "apparent" Michaelis constants were determined: L-tyrosine, 1.7 X 10(-3) M; 2-oxoglutarate, 5.9 X 10(-4) M; and pyridoxal 5'-phosphate, 2.1 X 10(-6) M. Tyrosine aminotransferase, depleted of its cofactors, binds 4 molecules of pyridoxal 5'-phosphate per 90 000 daltons with a KA of 2.2 X 10(5) M-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号