首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure of Golgi apparatus   总被引:2,自引:0,他引:2  
Summary Golgi apparatus (GA) of eukaryotic cells consist of one or more stacks of flattened saccules (cisternae) and an array of fenestrae and tubules continuous with the peripheral edges of the saccules. Golgi apparatus also are characterized by zones of exclusion that surround each stack and by an assortment of vesicles (or vesicle buds) associated with both the stacks and the peripheral tubules of the stack cisternae. Each stack (sometimes referred to as Golgi apparatus, Golgi complex, or dictyosome) is structurally and functionally polarized, reflecting its role as an intermediate between the endoplasmic reticulum, the cell surface, and the lysosomal system of the cell. There is probably only one GA per cell, and all stacks of the GA appear to function synchronously. All Golgi apparatus are involved in the generation and movement of product and membrane within the cell or to the cell exterior, and these functions are often reflected as structural changes across the stacks. For example, in plants, both product and membrane appear to maturate from the cis to the trans poles of the stacks in a sequential, or serial, manner. However, there is also strong ultrastructural evidence in plants for a parallel input to the stack saccules, probably through the peripheral tubules. The same modes of functioning probably also occur in animal GA; although here, the parallel mode of functioning almost surely predominates. In some cells at least, GA stacks give rise to tubular-vesicular structures that resemble the trans Golgi network. Rudimentary GA, consisting of tubular-vesicular networks, have been identified in fungi and may represent an early stage of GA evolution.  相似文献   

2.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

3.
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures which by immunofluorescence analysis as well as by biochemical subfractionation turned out to be the Golgi apparatus. It will be further shown that cdc25C at the Golgi fraction is an active phosphatase suggesting an additional and new role of cdc25C at the Golgi apparatus.  相似文献   

4.
On April 1898 Camillo Golgi communicated to the Medical-Surgical Society of Pavia, the discovery of the “internal reticular apparatus”, a novel intracellular organelle which he observed in nerve cells with the silver impregnation he had introduced for the staining of the nervous system. Soon after the discovery it became evident that this cellular component, which was also named the “Golgi apparatus”, was a ubiquitous structure in eukaryotic cells. However the reality of the organelle was questioned for years and many cytologists considered the internal reticular apparatus as an artefact due to the fixation and/or metallic impregnation procedure. The controversy was finally solved in the mid-1950s by electron microscopy when the Golgi apparatus definitely acquired its dignity of being a genuine cell organelle. The designation of “Golgi complex” entered officially in the literature in 1956. Both the terms Golgi apparatus and Golgi complex are currently interchangeable. However a quick “the Golgi” and the introduction of Golgi in adjectival form are now prevalent in the blooming scientific literature on the organelle. Thus Camillo Golgi underwent his final transformation and, becoming the eponym of the organelle he had discovered, he found a way to immortality.  相似文献   

5.
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and fusion events. Here we summarize recent advances in the understanding of the role of phospholipase D at the Golgi apparatus.  相似文献   

6.
This review summarizes the current reports on the Golgi apparatus of parasitic protists. Numerous recent publications have demonstrated that studies on intracellular traffic in parasites essentially advanced our knowledge on the Golgi structure and function, which has been traditionally based on research on yeast and mammalian cultured cells. It has been reported that the parasitic lifestyle determines the functional and structural peculiarities of the secretory systems in unrelated groups of unicellular parasites that make them different from those in mammalian and yeast cells. This review covers the best-studied protists, predominantly those of high medical importance, belonging to the following taxa: Parabasalia (Trichomonas), Diplomonada (Giardia), Entamoebidae (Entamoeba), parasitic Alveolata of the phyllum Apicomplexa (Toxoplasma, Plasmodium), and Kinetoplastida (Trypanosoma, Leishmania). The morphology of the Golgi organelle in eukaryotes from various taxonomic groups has been compared. Within three of the six highest taxa of Eukaryota (Adl et al., 2005) a minimum of eight groups are represented by species lacking Golgi dictiosomes. However, biochemical and/or molecular (genomic) evidence indicate that an organelle with the functions of the Golgi was present in every lineage of eukaryotes studied thus far. Loss of the Golgi organelle is a secondary event as proven by identification of Golgi genes in the genomes of Golgi-lacking lineages. The loss might have occurred independently several times in evolution. Neither the number of stacks, nor the size of the organelle correlates with the intensity of secretion or the position of the species on the evolutionary tree (in terms of presumably early/lately diverged lineages).  相似文献   

7.
8.
Targeting of proteins to the Golgi apparatus   总被引:5,自引:0,他引:5  
The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recyclingtrans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field.  相似文献   

9.
The Golgi apparatus: balancing new with old   总被引:4,自引:3,他引:1  
Most models put forward to explain cellular processes do not stand the test of time. The 'lucky' few that are able to survive extensive experimental tests and peer critique may eventually become dogmas or paradigms. When this happens, the amount of experimental data required to overturn the paradigm is extensive. To some, such inertia may seem prohibitive to scientific progress but rather, in our opinion, this helps to maintain a degree of coherence. It is needed so that experiments and interpretations may be conducted within relatively safe boundaries. In the field of protein transport in the secretory pathway, we have enjoyed a relatively stable and productive period for quite some time (more than 30 years!). It is only very recently that the field has entered into a phase where all bets seem to be off. As in any paradigm shift, the accumulation of experimental observations inconsistent with the old dogma eventually reached a critical point. As we 'reluctantly' dispense with the long-standing paradigm of forward vesicular transport, we face a time that is bound to be trying as well as exciting .  相似文献   

10.
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound.  相似文献   

11.
Tommy Nilsson 《FEBS letters》2009,583(23):3764-38340
The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of an in vitro transport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport.  相似文献   

12.
Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune‐dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species‐dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA‐dependent secretory pathway. This led to a general inhibition of protein secretion by PDT‐treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin‐based PDT. Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro‐apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function.  相似文献   

13.
E. Schnepf 《Protoplasma》1993,172(1):3-11
Summary The function of the Golgi apparatus in the secretion of plant slimes is reviewed. It is shown how the research on slime secretion has increased the knowledge on the structure and dynamics of dictyosomes. Current models on intradictyosomal membrane traffic-anterograde progression of complete cisternae or anterograde movement of lateral vesicles with stationary cisternae-are discussed in the light of old and new results on slime secreting plant cells.Dedicated to Hilton H. Mollenhauer on the occasion of his retirement  相似文献   

14.
The Golgi apparatus undergoes irreversible fragmentation during apoptosis, in part as a result of caspase-mediated cleavage of several Golgi-associated proteins. However, Golgi structure and orientation is also regulated by the cytoskeleton and cytoskeletal changes have been implicated in inducing apoptosis. Consequently, we have analyzed the role of actin filaments and microtubules in apoptotic Golgi fragmentation. We demonstrate that in Fas receptor-activated cells, fragmentation of the Golgi apparatus was an early event that coincided with release of cytochrome c from mitochondria. Significantly, Golgi fragmentation preceded major changes in the organization of both the actin cytoskeleton and microtubules. In staurosporine-treated cells, actin filament organization was rapidly disrupted; however, the Golgi apparatus maintained its juxtanuclear localization and underwent complete fragmentation only at later times. Attempts to stabilize actin filaments with jasplakinolide prior to treatment with staurosporine did not prevent Golgi fragmentation. Finally, in response to Fas receptor activation or staurosporine treatment the levels of beta-actin or alpha-tubulin remained unaltered, whereas several Golgi proteins, p115 and golgin-160, underwent caspase-mediated cleavage. Our data demonstrate that breakdown of the Golgi apparatus is an early event during apoptosis that occurs independently of major changes to the actin and tubulin cytoskeleton.  相似文献   

15.
Summary— In parabasalid flagellates, trichomonads and hypermastigids, the stack of cisternae of the Golgi apparatus are supported by striated roots attached to the basal bodies of flagella forming the so-called parabasal apparatus. Monoclonal antibodies raised for several trichomonad species, Monocercomonas, Trichomonas and Tetratrichomonas, label the parabasal fibre in immunofluorescence or immunogold staining and protein bands in immunoblotting. Several antibodies cross-react between trichomonad species, and one of them labels the homologous parabasal fibre in the hypermastigids: Trichonympha, Joenia, Pseudotrichonympha and Holomastigotoides. Considering the molecular mass range of the labelled proteins (100–135 kDa) and the lack of antibody cross-reactivity with the striated root proteins (centrin, assemblin, kinetodesmal protein, ciliary root proteins of epithelial ciliated cells) of other organisms, these proteins recognized by these antibodies seem to represent a new class of protein forming striated roots. The occurrence and significance of parabasal organization in eukaryogenesis is discussed.  相似文献   

16.
Background information. Acid‐secreting gastric parietal cells are polarized epithelial cells that harbour highly abundant and specialized, H+, K+ ATPase‐containing, tubulovesicular membranes in the apical cytoplasm. The Golgi apparatus has been implicated in the biogenesis of the tubulovesicular membranes; however, an unanswered question is how a typical Golgi organization could regulate normal membrane transport within the membrane‐dense cytoplasm of parietal cells. Results. Here, we demonstrate that the Golgi apparatus of parietal cells is not the typical juxta‐nuclear ribbon of stacks, but rather individual Golgi units are scattered throughout the cytoplasm. The Golgi membrane structures labelled with markers of both cis‐ and trans‐Golgi membrane, indicating the presence of intact Golgi stacks. The parietal cell Golgi stacks were closely aligned with the microtubule network and were shown to participate in both anterograde and retrograde transport pathways. Dispersed Golgi stacks were also observed in parietal cells from H+, K+ ATPase‐deficient mice that lack tubulovesicular membranes. Conclusions. These results indicate that the unusual organization of individual Golgi stacks dispersed throughout the cytoplasm of these terminally differentiated cells is likely to be a developmentally regulated event.  相似文献   

17.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

18.
Summary Recent advances in understanding the molecular mechanisms of membrane traffic to and through the Golgi apparatus have been predicated in large measure on the use of permeabilized animal cells, and on completely cell-free systems. These systems have included those addressing inter-Golgi apparatus membrane traffic, endoplasmic reticulum to Golgi apparatus traffic, and endocytotic events. Development of cell-free systems depends on the use of isolated fractions. Specificity is often achieved by using a compartment-specific assay so that the fractions employed can be very crude. More recently cell-free systems also have evolved which employ highly purified and well-characterized cell fractions. The latter may be utilized in the absence of a compartment-specific assay but may require employment of compartment-specific assays for validation. Central to development of cell-free systems for membrane analysis has been the availability of isolated Golgi apparatus, first from plants and later from animal tissues and cells. A major advantage of cell-free systems is that they are most clearly amenable to the investigation of molecular mechanisms of membrane trafficking.Dedicated to Hilton H. Mollenhauer on the occasion of his retirement  相似文献   

19.
高尔基体既是蛋白质修饰、分选、水解加工的场所,又是分泌物质的转运站,每时每刻都有大量的蛋白进出高尔基体。在这种情况下,高尔基体仍能保持完整且高度有序的结构,表明高尔基体驻留蛋白有精确的定位信号,以保证它们定位于正确的区隔,而不会沿着分泌途径被运输出去。高尔基体内有几种不同类别的膜蛋白,包括糖基转移酶、周缘膜蛋白、病毒蛋白和受体等。研究显示,有多种定位信号和定位机制参与了蛋白的高尔基体定位。  相似文献   

20.
We carried out a kinetic characterization of the Ca(2+)active transport in the rat liver Golgi Apparatus (GA) membrane. Calcium accumulation by vesicles of a GA enriched fraction was found to be a function of both Ca(2+)and ATP-Mg concentrations, it was inhibited by 2 microm thapsigargin but not stimulated by 3 microm calmodulin. The kinetic parameter values obtained for the GA Ca(2+)pump were: J(max)of 3.96 nmol/mg min, K(m)for Ca(2+)of 0.150 microm and two K(m)'s for ATP of 1.14 microm and 519 microm. These results were almost identical to those obtained for the endoplasmic reticulum (ER) fraction, indicating that the GA Ca(2+)pump is a sarco/endoplasmic reticulum (SERCA) P-type, analogous-if not identical-to that present in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号