首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medial gastrocnemius surface electromyographic activity and intramuscular electromyographic activity were recorded from six individuals with chronic cervical spinal cord injury to document the recruitment order of motor units during clonus. Four subjects induced clonus that lasted up to 30 s while two subjects induced clonus that they actively stopped after 1 min. Mean clonus frequency in different subjects ranged from 4.7 to 7.0 Hz. Most of the 166 motor units recorded during clonus (98%) fired once during each contraction but at slightly different times during each cycle. Other motor units fired during some clonus cycles (1%) or in bursts (1%). When 59 pairs of units were monitored over consecutive clonus cycles (n = 5-89 cycles), only 8 pairs of units altered their recruitment order in some cycles. Recruitment reversals only occurred in units that fired close together in the clonus cycle. These data demonstrate that orderly motor unit recruitment occurs during involuntary contractions of muscles paralyzed chronically by cervical spinal cord injury, providing further support for the importance of spinal mechanisms in the control of human motor unit behavior.  相似文献   

2.
Upper motor neuron diseases (UMND), such as stroke and spinal cord injury (SCI), are assumed to produce alterations in muscle tissue in association with neural damage. Distinguishing between these two factors is of clinical importance in choosing appropriate therapy. We studied the effect of changes in the gain of the Ia reflex pathway and tissue viscoelasticity on the emergence, frequency, and persistence of ankle clonus: a clinically significant, involuntary oscillatory movement disorder. Monte Carlo simulations were performed to explain our experimental observations in patients with stroke (n = 3) and SCI (n = 4) using a nonlinear antagonistic muscle model of the human ankle joint. Ia reflex gain was varied by changing motor unit pool threshold and gain, and passive tissue viscosity and elasticity were varied by changing optimal muscle length. Tissue viscoelasticity appeared to have a strong effect on the emergence and persistence of clonus. Observed frequencies of ankle movement, prior to and after the experimental intervention of a sudden damper, was predicted by the model. The simulations revealed that reflex gains were largest in patients with the largest tissue viscoelasticity. We conclude that ankle clonus in stroke and SCI is the result of a combination of, and suggests a relation between, (i) a decrease in threshold and an increase in gain of the motor unit pool and (ii) a decrease in optimal muscle length.  相似文献   

3.
The role of muscle activation in both pathological and spastic populations is of interest for understanding central nervous system function. Muscle activation patterns may provide insight into pathological changes compared to healthy controls. To gain a better understanding of surgical interventions, gait muscle activation patterns are studied before and after surgery. Previous studies using surface electromyography have indicated that muscle activation onset, time to peak, and peak amplitude may be helpful in assessing the neuromuscular control strategy that underlies pathological populations. Geometric artifact may influence electromyographic variables as recorded by different electrode types and electrode placement. The purpose of this investigation was to compare surface and fine-wire activation patterns during gait to elucidate the influence electrode type has on electromyographic variables. Lower leg surface and fine-wire electromyographic activity was recorded simultaneously during gait to assess if electrode type (fine-wire vs. surface) affects muscle onset, time to peak, peak amplitude, and activation patterns. No significant differences were recorded between surface and fine-wire electrodes for muscle onset or time to peak activation. Activation patterns revealed similarity between electrodes. Some significant differences were detected in peak amplitude. Non-invasive surface electrodes provide an adequate representation of timing variables for primary ankle muscles during gait.  相似文献   

4.
 The large mass of the human upper trunk, its elevated position during erect stance, and the small area limited by the size of the feet, stress the importance of equilibrium control during trunk movements. The objective of the present study was to perform a biomechanical analysis of fast forward trunk movements in order to understand the coordination between movement and posture. The analysis is based on a comparison between experimentally observed bending and hypothetical “optimal bending” performed on an infinitely narrow support, as presented in a companion paper. The experimental data were obtained from 16 subjects who performed fast forward bending while standing on a wide platform or on a narrow beam. The analysis is performed by decomposition of the movement into three dynamically independent components, each representing a movement along one of the three eigenvectors of the motion equation. The eigenmovements are termed “hip”, “ankle”, and “knee” eigenmovements, according to the dominant joint. The experimentally observed movement is characterized mainly by the hip and ankle eigenmovements, whereas the knee eigenmovement is negligible. Similarly to the “optimal bending” the ankle eigenmovement starts earlier and lasts longer than the hip eigenmovement. An early forward acceleration of the center of gravity in the ankle eigenmovement is caused by anticipatory changes in the ankle joint torque. This clarifies the role of the early tibialis anterior burst and/or soleus inhibition usually observed in electromyographic recordings during forward bending. The results suggest that the hip and the ankle eigenmovements can be treated as independently controlled motion units aimed at functionally different behavioral goals: the bending per se and postural adjustment. It is proposed that the central nervous system has to control these motion units sequentially in order to perform the movement and maintain equilibrium. It is also suggested that the hip and ankle eigenmovements can be regarded as a biomechanical background for the hip and ankle strategies introduced by Horak and Nashner (1986) on the basis of electromyographic recordings and kinematic patterns in response to postural perturbations. Received: 1 July 1999 / Accepted in revised form: 23 October 2000  相似文献   

5.
The mean frequency of the power spectrum of an electromyographic signal is an accepted index for monitoring fatigue in static contractions. There is however, indication that it may be a useful index even in dynamic contractions in which muscle length and/or force may vary. The objective of this investigation was to explore this possibility. An examination of the effects of amplitude modulation on modeled electromyographic signals revealed that changes in variance created in this way do not sufficiently affect characteristic frequency data to obscure a trend with fatigue. This validated the contention that not all non-stationarities in signals necessarily manifest in power spectral parameters. While an investigation of the nature and effects of non-stationarities in real electromyographic signals produced from dynamic contractions indicated that a more complex model is warranted, the results also indicated that averaging associated with estimating spectral parameters with the short-time Fourier transform can control the effects of the more complex non-stationarities. Finally, a fatigue test involving dynamic contractions at a force level under 30% of peak voluntary dynamic range, validated that it was possible to track fatigue in dynamic contractions using a traditional short-time Fourier transform methodology.  相似文献   

6.
The purpose of this study was to examine the effect of proprioceptive neuromuscular facilitation (PNF) stretching on musculotendinous unit (MTU) stiffness of the ankle joint. Twenty active women were assessed for maximal ankle range of motion, maximal strength of planter flexors, rate of force development, and ankle MTU stiffness. Subjects were randomly allocated into an experimental (n = 10) group or control group (n = 10). The experimental group performed PNF stretching on the ankle joint 3 times per week for 4 weeks, with physiological testing performed before and after the training period. After training, the experimental group significantly increased ankle range of motion (7.8%), maximal isometric strength (26%), rate of force development (25%), and MTU stiffness (8.4%) (p < 0.001). Four weeks of PNF stretching contributed to an increase in MTU stiffness, which occurred concurrently with gains to ankle joint range of motion. The results confirm that MTU stiffness and joint range of motion measurements appear to be separate entities. The increased MTU stiffness after the training period is explained by adaptations to maximal isometric muscle contractions, which were a component of PNF stretching. Because a stiffer MTU system is linked with an improved the ability to store and release elastic energy, PNF stretching would benefit certain athletic performance due to a reduced contraction time or greater mechanical efficiency. The results of this study suggest PNF stretching is a useful modality at increasing a joint's range of motion and its strength.  相似文献   

7.
Investigations of human foot and ankle biomechanics rely chiefly on cadaver experiments. The application of proper force magnitudes to the cadaver foot and ankle is essential to obtain valid biomechanical data. Data for external ground reaction forces are readily available from human motion analysis. However, determining appropriate forces for extrinsic foot and ankle muscles is more problematic. A common approach is the estimation of forces from muscle physiological cross-sectional areas and electromyographic data. We have developed a novel approach for loading the Achilles and posterior tibialis tendons that does not prescribe predetermined muscle forces. For our loading model, these muscle forces are determined experimentally using independent plantarflexion and inversion angle feedback control. The independent (input) parameters -- calcaneus plantarflexion, calcaneus inversion, ground reaction forces, and peroneus forces -- are specified. The dependent (output) parameters -- Achilles force, posterior tibialis force, joint motion, and spring ligament strain -- are functions of the independent parameters and the kinematics of the foot and ankle. We have investigated the performance of our model for a single, clinically relevant event during the gait cycle. The instantaneous external forces and foot orientation determined from human subjects in a motion analysis laboratory were simulated in vitro using closed-loop feedback control. Compared to muscle force estimates based on physiological cross-sectional area data and EMG activity at 40% of the gait cycle, the posterior tibialis force and Achilles force required when using position feedback control were greater.  相似文献   

8.
A specially instrumented bicycle ergometer is utilized in this investigation to induce reproducable loading conditions on the muscles of the lower extremity at different speeds. Various tehcniques for evaluating the electromyographic signals from the vastas medialis muscle are investigated for different load and speed conditions and shown to be essentially equivalent. The RMS signal power computed by means of a real time spectral analyzer is shown to be a convenient means of quantification of the dynamic EMG signals. The electromyographic signals are shown to be stable under repeated static or dynamic conditions but not under sustained isometric static loading.  相似文献   

9.
The objective of this study was to measure adaptations in landing strategy during single-leg hops following thigh muscle fatigue. Kinetic, kinematic, and electromyographic data were recorded as thirteen healthy male subjects performed a single-leg hop in both the unfatigued and fatigued states. To sufficiently fatigue the thigh muscles, subjects performed at least two sets of 50 step-ups. Fatigue was assessed by measuring horizontal hopping ability following the protocol. Joint motion and loading, as well as muscle activation patterns, were compared between fatigued and unfatigued conditions. Fatigue significantly increased knee motion (p = 0.012) and shifted the ankle into a more dorsiflexed position (p = 0.029). Hip flexion was also reduced following fatigue (p = 0.042). Peak extension moment tended to decrease at the knee and increase at the ankle and hip (p = 0.014). Ankle plantar flexion moment at the time of peak total support moment increased from 0.8 (N x m)/kg (SD, 0.6 [N x m]/kg) to 1.5 (N x m)/kg (SD, 0.8 [N x m]/kg) (p = 0.006). Decreased knee moment and increased knee flexion during landings following fatigue indicated that the control of knee motion was compromised despite increased activation of the vastus medialis, vastus lateralis, and rectus femoris (p = 0.014, p = 0.014, and p = 0.017, respectively). Performance at the ankle increased to compensate for weakness in the knee musculature and to maintain lower extremity stability during landing. Investigating the biomechanical adaptations that occur in healthy subjects as a result of muscle fatigue may give insight into the compensatory mechanisms and loading patterns occurring in patients with knee pathology. Changes in single-leg hop landing performance could be used to demonstrate functional improvement in patients due to training or physical therapy.  相似文献   

10.
11.
The dynamic response of the human ankle joint to a bandlimited random torque perturbation superimposed on a constant bias torque is observed in normal human subjects. The applied torque input, the joint angular rotation output, and the electromyographic activity using surface electrodes from the extensor and the flexor muscles of the ankle joint were recorded. Transfer function models using time series techniques were developed for the torque — angular rotation input-output pair and for the angular rotation — electromyographic activity input-output pair. A parameter constraining technique was applied to develop more reliable models. It is shown that the asymptotic behavior of the system must be taken into account during parameter optimization to develop better predictive models.This work was supported in part by National Science Foundation grant ENG-7608754 and grants from the National Institutes of Health NS-12877 and NS-00196  相似文献   

12.
This study investigated the ankle inversion and inversion velocity between various common motions in sports and simulated sprain motion, in order to provide a threshold for ankle sprain risk identification. The experiment was composed of two parts: Firstly, ten male subjects wore a pair of sport shoes and performed ten trials of running, cutting, jump-landing and stepping-down motions. Secondly, five subjects performed five trials of simulated sprain motion by a supination sprain simulator. The motions were analyzed by an eight-camera motion capture system at 120 Hz. A force plate was employed to record the vertical ground reaction force and locate the foot strike time for common sporting motions. Ankle inversion and inversion velocity were calculated by a standard lower extremity biomechanics calculation procedure. Profiles of vertical ground reaction force, ankle inversion angle and ankle inversion velocity were obtained. Results suggested that the ankle was kept in an everted position during the stance. The maximum ankle inversion velocity ranged from 22.5 to 85.1°/s and 114.0 to 202.5°/s for the four tested motions and simulated sprain motion respectively. Together with the ankle inversion velocity reported in the injury case (623°/s), a threshold of ankle inversion velocity of 300°/s was suggested for the identification of ankle sprain. The information obtained in this study can serve as a basis for the development of an active protection apparatus for reducing ankle sprain injury.  相似文献   

13.
The restoration of original range and pattern of motion is the primary goal of joint replacement and ligament reconstruction. The objective of the present work is to investigate whether or not a preferred path of joint motion at the intact human ankle complex is exhibited during passive flexion. A rig was built to move the ankle complex through its range of flexion while applying only the minimum necessary load to drive ankle flexion. Joint motion was constrained only by the articular surfaces and the ligaments. The movements of the calcaneus, talus and fibula relative to the stationary tibia in seven cadaveric specimens were tracked with a stereophotogrammetric system. It was shown that the calcaneus follows a unique path of unresisted coupled motion relative to the tibia and that most of the motion occurred at the ankle, with little motion at the subtalar level. The calcaneofibular and the tibiocalcaneal ligaments showed near-isometric pattern of rotations. All specimens showed motion of the axis of rotation relative to the bones. Deviations from the unique path due to the application of load involved mostly subtalar motion and were resisted. The ankle complex exhibits one degree of unresisted freedom, the ankle behaving as a single degree of freedom mechanism and the subtalar as a flexible structure. We deduced that the calcaneofibular and tibiocalcaneal ligaments together with the articular surfaces guide ankle passive motion, other ligaments limit but do not guide motion.  相似文献   

14.
The kinematic and electromyographic parameters of a normal walking pattern have been studied before immersion and on the sixth day of immersion in six volunteers aged 22–25 years. It has been shown that exposure to supportless conditions for six days resulted in a decrease in the angular velocities in the knee and ankle joints and small changes in the amplitude of angular motions in the joints of the leg. However, the kinematic stereotype of locomotor movements was not significantly changed after six days of immersion. An increase in the electromyographic cost of the shin locomotion indicates shifts in the central and peripheral systems of the locomotion apparatus.  相似文献   

15.
Reflexes are important in the control of such daily activities as standing and walking. The goal of this study is to establish how reflexive feedback of muscle length, velocity, and force can lead to stable equilibria (i.e., posture) and limit cycles (e.g., ankle clonus and gait). The influence of stretch reflexes on the behavior and stability of musculoskeletal systems was examined using a model of human stance. We computed branches of fold and Hopf bifurcations by numerical bifurcation analysis of the model. These fold and Hopf branches divide the parameter space, constructed by the reflexive feedback gains, into regions of different behavior: unstable posture, stable posture, and stable limit cycles. These limit cycles correspond to a neural deficiency, termed ankle clonus. We also linked bifurcation analysis to known biomechanical concepts by linearizing the model: the fold branch corresponds to zero ankle stiffness and defines the minimal muscle length feedback necessary for stable posture; the Hopf branch is related to unstable reflex loops. Crossing the Hopf branch can lead to the above-mentioned stable limit cycles. The Hopf branch reduces with increasing time delays, making the subjects posture more susceptible to unstable reflex loops. This might be one of the reasons why elderly people, or those with injuries to the central nervous system, often have trouble with standing and other posture tasks. The influence of cocontraction and force feedback on the behavior of the posture model was also investigated. An increase in cocontraction leads to an increase in ankle stiffness (i.e., intrinsic muscle stiffness) and a decrease in the effective reflex loop gain. On the one hand, positive force feedback increases the ankle stiffness (i.e., intrinsic and reflexive muscle stiffness); on the other hand it makes the posture more susceptible to unstable reflex loops. For negative force feedback, the opposite is true. Finally, we calculated areas of reflex gains for perturbed stance and quiet stance in healthy subjects by fitting the model to data from the literature. The overlap of these areas of reflex gains could indicate that stretch reflexes are the major control mechanisms in both quiet and perturbed stance. In conclusion, this study has successfully combined bifurcation analysis with the more common biomechanical concepts and tools to determine the influence of reflexes on the stability and quality of stance. In the future, we will develop this line of research to look at rhythmic tasks, such as walking.  相似文献   

16.
Position dependence of ankle joint dynamics--II. Active mechanics   总被引:2,自引:0,他引:2  
System identification techniques were used to examine the position dependence of active ankle joint mechanics. Subjects were required to maintain tonic contractions in either the tibialis anterior (TA) or triceps surae (TS) muscles while the ankle was stochastically displaced about different mean angular positions. The dynamic relation between ankle position and torque was determined for each mean position/tonic torque combination; a non-linear minimization technique was used to estimate the three parameters (inertial, viscous and elastic) of a second-order, underdamped system. Whereas the inertial parameter remained essentially invariant across all test conditions, the viscous and elastic (K) parameters became larger as the level of tonic activity increased and as the joint was rotated toward the extremes of the range of motion. The relation between K and torque was linear at all ankle angles. The slope of this relation remained constant at all mean positions during plantarflexor contractions; during dorsiflexor contractions the slope increased as the ankle was rotated from maximum plantarflexion to maximum dorsiflexion. These findings are discussed in terms of: the physiological correlates of ankle mean position, the relative significance of passive and active joint mechanics and contrasts in joint behaviour during active dorsiflexor and plantarflexor contractions.  相似文献   

17.
Distinguishing gastrocnemius and soleus muscle function is relevant for treating gait disorders in which abnormal plantarflexor activity may contribute to pathological movement patterns. Our objective was to use experimental and computational analysis to determine the influence of gastrocnemius and soleus activity on lower limb movement, and determine if anatomical variability of the gastrocnemius affected its function. Our hypothesis was that these muscles exhibit distinct functions, with the gastrocnemius inducing limb flexion and the soleus inducing limb extension. To test this hypothesis, the gastrocnemius or soleus of 20 healthy participants was electrically stimulated for brief periods (90 ms) during mid- or terminal stance of a random gait cycle. Muscle function was characterized by the induced change in sagittal pelvis, hip, knee, and ankle angles occurring during the 200 ms after stimulation onset. Results were corroborated with computational forward dynamic gait models, by perturbing gastrocnemius or soleus activity during similar portions of the gait cycle. Mid- and terminal stance gastrocnemius stimulation induced posterior pelvic tilt, hip flexion and knee flexion. Mid-stance gastrocnemius stimulation also induced ankle dorsiflexion. In contrast mid-stance soleus stimulation induced anterior pelvic tilt, knee extension and plantarflexion, while late-stance soleus stimulation induced relatively little change in motion. Model predictions of induced hip, knee, and ankle motion were generally in the same direction as those of the experiments, though the gastrocnemius? results were shown to be quite sensitive to its knee-to-ankle moment arm ratio.  相似文献   

18.
A three-dimensional model for normal gait formulated in Part 1 is now altered to simulate the dynamics of pathological walking. Mechanisms fundamental to the production of a normal gait pattern are systematically removed, in order to assess contributions from individual gait determinants. Four separate pathological cases are studied: a model neglecting ankle plantarflexor activity; absence of stance knee flexion-extension and foot and knee interaction; both pelvic list and transverse pelvic rotation removed; and finally, a model with all major gait determinants missing. These are used collectively to show that stance knee flexion-extension and foot and knee interaction successively dominate lower-extremity dynamical response during the single support phase of normal gait. The hip abductor muscles, while effecting pelvic list, serve to stabilize this limb, rather than actively determine whole-body vertical acceleration. Mechanisms compensating for a loss in joint motion are also explored. Complete ankle loss may be successfully compensated with increased hip abductor muscle activity; the loss of both ankle and knee, however, demand unacceptable levels of vertical pelvic displacement.  相似文献   

19.
During echocardiographic examination, respiration induces cyclic physiological changes of intracardiac haemodynamics, causing normal variations of the right and left ventricle Doppler inflows and outflows and physiological variation of extracardiac flows. The respiration related hemodynamic variation in intra and extracardiac flows may be utilized in the echocardiography laboratory to aid diagnosis in different pathological states. Nevertheless, physiologic respiratory phases can cause excessive translational motion of cardiac structures, lowering 2D image quality and interfering with optimal Doppler interrogation of flows or tissue motion. This review focuses on the impact of normal respiratory cycle and provocative respiratory maneuvers in echocardiographic examination, both in physiological and pathological states, emphasizing their applications in specific clinical situations.  相似文献   

20.
The aims of the current study were to examine the stationarities of surface electromyographic (EMG) signals obtained from eight bilateral back and hip muscles during a modified Biering-Sørensen test, and to investigate whether short-time Fourier (STFT) and continuous wavelet transforms (CWT) provided similar information with regard to EMG spectral parameters in the analysis of localized muscle fatigue. Twenty healthy subjects participated in the study after giving their informed consent. Reverse arrangement tests showed that 91.6% of the EMG signal epochs demonstrated no significant trends (all p > 0.05), meaning 91.6% of the EMG signal epochs could be considered as stationary signals. Pearson correlation coefficients showed that STFT and CWT in general provide similar information with respect to the EMG spectral variables during isometric back extensions, and as a consequence STFT can still be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号