首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun B  Ko K  Ramsay JA 《Biodegradation》2011,22(3):651-659
A dioxane-degrading consortium was enriched from soil obtained from a contaminated groundwater plume. The enriched consortium did not use dioxane as the sole source of carbon and energy but co-metabolized dioxane in the presence of tetrahydrofuran (THF). THF and dioxane concentrations up to 1000 ppm were degraded by the enriched consortium in about 2 weeks with a longer lag phase observable at 1000 ppm. Three colonies from the enriched consortium were then obtained on agar plates containing basal salts and glucose as the carbon source. Only one of the three colonies was capable of dioxane degradation. Further enrichment of this colony in liquid media led to a pure culture that grew on glucose and co-metabolically degraded dioxane after THF degradation. The rate and extent of dioxane degradation of this isolate increased with increasing THF concentration. This isolate was subsequently identified as a Flavobacterium by 16S rDNA sequencing. Using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analysis of microbial populations, Flavobacterium was determined to be the dominant species in the enriched consortium and was distinct from the two other colonies that did not degrade dioxane. This is the first report of a dioxane-degrading Flavobacterium which is phylogenetically distinct from any previously identified dioxane degrader.  相似文献   

2.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

3.
Growth of most Rhizobium strains is inhibited by mimosine, a toxin found in large quantities in the seeds, foliage and roots of plants of the genera Leucaena and Mimosa. Some Leucaena-nodulating strains of Rhizobium can degrade mimosine (Mid+) and are less inhibited by mimosine in the growth medium than the mimosine-nondegrading (Mid-) strains. Ten Mid+ strains were identified that did not degrade 3-hydroxy-4-pyridone (HP), a toxic intermediate of mimosine degradation. However, mimosine was completely degraded by these strains and HP was not accumulated in the cells when these strains were grown in a medium containing mimosine as the sole source of carbon and nitrogen. The mimosine-degrading ability of rhizobia is not essential for nodulation of Leucaena species, but it provides growth advantages to Rhizobium strains that can utilize mimosine, and it suppresses the growth of other strains that are sensitive to this toxin.  相似文献   

4.
Laccase (EC 1.10.3.2) from the white-rot basidomycete Trametes versicolor in the presence of organic peroxides, particularly dioxane peroxide, tetrahydrofuran peroxide and t-butylhydroperoxide, initiated free-radical copolymerization of acrylamide and lignin. Hydrogen peroxide showed no such effect. Both the type of peroxide and the catalytic efficiency of the enzyme were important to ensure a significant yield of copolymerisate and a high rate of acrylamide incorporation into a lignin backbone. The mechanism of the enzymatic grafting is discussed. Received: 12 August 1998 / Received revision: 18 November 1998 / Accepted: 21 November 1998  相似文献   

5.
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855T, which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707T and Pseudonocardia asaccharolytica JCM 10410T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.  相似文献   

6.
Summary Screening of strains isolated from red wine undergoing malolactic fermentation allowed the identification of lactic acid bacteria able to degrade arginine. A denaturing gradient gel electrophoresis approach, using the rpoB gene as the molecular target, was developed in order to characterize the isolated strains. Several strains were identified as Lactobacillus plantarum and were typed by RAPD-PCR with several randomly designed primers. Almost all of the␣L. plantarum strains identified were able to produce citrulline and ammonia, suggesting that the ability of␣L.␣plantarum to degrade arginine is a common feature in wine. During the characterization of the newly identified L.␣plantarum strains, the presence of genes coding for the arginine deiminase (ADI) pathway was observed in the strains able to produce citrulline, while the lack of this genes was observed in strain unable to produce citrulline. These results suggest that the degradation of arginine in L. plantarum is probably strain-dependent.  相似文献   

7.
H Yamamoto  T Hayakawa 《Biopolymers》1971,10(2):309-320
β-(l)-Menthyl D - and L -aspartates were prepared by a fusion reaction of N-phthalyl D - and L -aspartic anhydrides with l-menthol, followed by hydrazinolysis. The monomers were then polymerized to poly[β-(l)-menthyl D - and L -aspartates] by the N-carboxyanhydride method. These polymers were soluble in many organic solvents, such as diethyl ether, tetrahydrofuran, chloroform, n-bexane, and dioxane. From the results obtained by a study of the optical rotatory dispersions and circular dichroisms, poly [β-(l)-menthyl D -aspartate] was found to be a β form structure in solution. On the other hand, poly[β-(l)-menthyl L -aspartate] was a random-coil structure. These results suggest that the asymmetry of the l-menthyl chromophore in the side chain interacts with the polypeptide main chain and causes an extraordinary optical rotation.  相似文献   

8.
Alachlor (2-cloro-N-(methoxymethyl)-N-(2,6-diethylphenyl)-acetamide) is an extremely toxic and highly mobile herbicide that is widely used for pre-emergence control of grasses and weeds in many commercial crops in Brazil. In order to select soil actinomycetes able to degrade this herbicide, fifty-three actinomycete strains were isolated from soil treated with alachlor using selective conditions and subjected to in vitro degradation assays. Sixteen isolates were shown to be tolerant to high concentrations of the herbicide (up to 720 mg L-1), and six of these were able to grow and degrade 50 alachlor (72 mg L-1) in mineral salts medium. Morphological and phylogenetic analysis enabled the assignment of the alachlor-degrading strains to the genus Streptomyces. Strain LS151 was related to the type strains of Streptomyces capoamus/Streptomyces galbus, whereas strains LS143 and LS153 were related to Streptomyces bikiniensis. The remaining strains, LS166, LS177 and LS182, were similar in morphological features and recovered in a single cluster based on 16S rDNA sequence analysis, but shown to be distinct on the basis of genomic fingerprint data (rep-PCR). Though a definitive taxonomic assignment of alachlor-degrading strains was not possible, these data indicate that ability to degrade this pesticide was detected in different Streptomyces taxa.  相似文献   

9.
Summary A specific method for analysis of geosmin in bacterial cultures was developed which used a minimum of manipulation. Strains of Bacillus cereus, previously reported to degrade geosmin, were tested for their ability to degrade synthetic geosmin. The initial concentration of geosmin in media was not appreciably changed by the growth of the Bacillus strains. The natural isomer of geosmin was also tested with one of these strains and was not degraded. Previous evidence for the degradation of geosmin by Bacillus is discussed critically.NRCC No 26104  相似文献   

10.
Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methylnaphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l−1 Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate at which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, strain B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium. Journal of Industrial Microbiology & Biotechnology (2001) 26, 283–289. Received 25 September 2000/ Accepted in revised form 08 February 2001  相似文献   

11.
Poplar Lignin Decomposition by Gram-Negative Aerobic Bacteria   总被引:8,自引:7,他引:1       下载免费PDF全文
Eleven gram-negative aerobic bacteria (Pseudomonadaceae and Neisseriaceae) out of 122 soil isolates were selected for their ability to assimilate poplar dioxane lignin without a cosubstrate. Dioxane lignin and milled wood lignin degradation rates ranged between 20 and 40% of initial content after 7 days in mineral medium, as determined by a loss of absorbance at 280 nm; 10 strains could degrade in situ lignin, as evidenced by the decrease of the acetyl bromide lignin content of microtome wood sections. No degradation of wood polysaccharides was detected. Lignin biodegradation by Pseudomonas 106 was confirmed by 14CO2 release from labeled poplar wood, although in lower yields compared with results obtained through chemical analysis based on acetyl bromide residual lignin determination.  相似文献   

12.
H Inoue  T Izumi 《Biopolymers》1976,15(4):797-812
The preferential binding of solvent components with a nonionic homopolypeptide, poly(N5-(3-hydroxypropyl)-L -glutamine), ([Gln((CH2)3OH)]n), has been determined in water/dioxane mixtures using differential refractometry. The degree of preferential binding was calculated from the difference between the refractive index increments of [Gln((CH2)3OH)]n obtained from experiments carried out under two conditions: experiments where the molality of dioxane was kept identical in both compartments of the differential cell, and experiments where the chemical potential was kept identical. The polypeptide was preferentially hydrated between 10 and 70 wt % of dioxane; the amount of preferential hydration per gram of the mixed solvent increases monotonically (with a plateau region between 40 and 60 wt %) with the dioxane concentration. A monotonic increase was also observed in the degree of helicity of the polypeptide. The absolute amounts of water and dioxane bound by [Gln((CH2)3OH)]n were investigated in the frozen state by the method of nuclear magnetic resonance. Hydration was measured using a mixed solvent, water/dioxane-d8; dioxane solvation was measured using a mixed solvent, dioxane/D2O. The polypeptide binds about 0.35 g of water per g of the polymer in aqueous solution, and hydration decreases gradually with an increase in dioxane concentration. On the other hand, the amount of dioxane solvation increases to 0.04 g per g of the polymer in the dioxane concentration range between 0 and 20 wt %, and then levels off. The rapid increase in solvation is observed before the conformational transition from random coil to α-helix occurs in [Gln((CH2)3OH)]n. The dependence of the preferential and absolute binding of solvent components to [Gln((CH2)3OH)]n on dioxane concentration and the conformational change in the homopolypeptide suggest that addition of dioxane to aqueous solutions induces lowering of water activity and that the helical structure of the polypeptide is enhanced by the formation of intrachain hydrogen bonds. The validity of the frozen method is also discussed.  相似文献   

13.
Tseng M  Hoang KC  Yang MK  Yang SF  Chu WS 《Biodegradation》2007,18(5):579-583
Thermophilic actinomycetes strains were isolated from various environment in Taiwan and screened for degradation of poly(ethylene succinate) (PES), poly(ε-caprolactone) (PCL) and/or poly(β-hydroxybutyrate) (PHB) by the clear-zone method. Out of 341 strains of thermophilic actinomycetes, 105 isolates were PHB-degraders (30.8%), 198 isolates were PCL-decomposers (58.1%), and 99 isolates could degrade PES (29.0%). Furthermore, 77 isolates could degrade both PHB and PCL (22.6%), 35 isolates could degrade both PHB and PES (10.3%), 81 isolates could degrade both PES and PCL (23.8%) and 31 isolates could degrade the three polyesters used in this study (9.1%). Base on the morphological and chemical characteristics, these 31 isolates belonging to Actinomadura (12.9%), Microbispora (25.8%), Streptomyces (48.4%), Thermoactinomyces (9.7%) and Saccharomonospora genus (3.22%).  相似文献   

14.
The metabolic pathways involved in degradation of tannin-protein complex (T-PC) were investigated in various facultatively anaerobic bacteria, with specific reference to fecal isolates from the koala including T-PC-degrading enterobacteria (T-PCDE),Streptococcus bovis, Klebsiella pneumoniae, andK. oxytoca. It was demonstrated that T-PCDE andS. bovis biotype I were capable of degrading protein complexed with gallotannin (a hydrolyzable tannin), but not that complexed with quebracho (a condensed tannin). Subsequent studies showed that these strains metabolized gallic acid to pyrogallol. Strains ofKlebsiella pneumoniae andK. oxytoca, which did not degrade T-PC, also metabolized gallic acid into pyrogallol. Pyrogallol was not degraded by any strains studied, but it was not detected in fresh feces of the koalas. The majority of strains isolated from feces could degrade phloroglucinol. Based on these findings, we propose that members of the gut microflora of the koala cooperate in the degradation of T-PC.  相似文献   

15.
It was found that Pseudoalteromonas citrea strains KMM 3296 and KMM 3298 isolated from the brown algae Fucus evanescens and Chorda filum, respectively, and strain 3297 isolated from the sea cucumber Apostichopus japonicus are able to degrade fucoidans. The fucoidanases of these strains efficiently degraded the fucoidan of brown algae at pH 6.5–7.0 and remained active at 40–50°C. The endo-type hydrolysis of fucoidan resulted in the formation of sulfated -L-fucooligosaccharides. The other nine strains of P. citrea studied (including the type strain of this species), which were isolated from other habitats, were not able to degrade fucoidan.  相似文献   

16.
The soil microbial population of a coke oven site was investigated in order to evaluate its potential for bioremediation. The study was carried out in soil samples with distinct polynuclear aromatic hydrocarbon (PAH) contamination levels, comparing the population profiles constituted by total heterotrophic and PAH-utilizing strains. Isolation of degrading strains was performed with phenanthrene or pyrene as sole carbon sources. The ability to degrade other PAHs, such as anthracene, fluorene and fluoranthene was also investigated. The results showed a reduction of 30% in species diversity and microbial density drops one order of magnitude in contaminated samples. Furthermore, the number of PAH-utilizing colonies was higher in the contaminated area and about 20% of the isolates were able to degrade phenanthrene and pyrene, while this value decreased to 0.15% in uncontaminated samples. Three PAH-degrader strains were identified as: CDC gr. IV C-2, Aeromonas sp. and Pseudomonas vesicularis. The ability of these strains to degrade other PAHs was also investigated.  相似文献   

17.
The ability of a wide variety of soil-borne fungal strains to degrade four structurally different com pounds containing PC bonds, namely the naturally occurring amino acid ciliatine, the popular herbicide glyphosate, phosphonoacetic acid and 2-amino-3-phosphonopropionic acid, was studied in order to show that soil fungi may play an important role in the biodegradation of organophosphonates. Most of the strains appeared to utilize ciliatine as the sole source of phosphorus for growth. Only a limited number of strains were able to grow on the other phosphonates used in this work. The strains of Trichoderma harzianum, Scopulariopsis sp. and Aspergillus niger chosen for more detailed study show the ability to degrade ciliatine, glyphosate and also amino(3-methoxyphenyl)mehtylphosphonic acid effectively. Received: 14 May 1997 / Received revision: 10 June 1997 / Accepted: 14 June 1997  相似文献   

18.
Summary Coir, fibre of coconut used for making ropes results in the accumulation of huge quantities of lignin waste. Enrichment technique yielded a lignin a degrading bacterium characterized as Pseudomonas sp. KUO3. This organism was able to degrade acid, dioxane and fibre lignins which are the true representatives of native lignin. The direct polyphenol oxidase and laccase enzyme assays and the indirect ligninase assay with -keto--methyl thiol butyric acid and the concomitant release of phenols and sugars proved the organism's ability to degrade lignin.  相似文献   

19.
A bacterial community degrading branched alkylphenol ethoxylate (APE) was selected from coastal sea water intermittently polluted by urban sewage. This community degraded more than 99% of a standard surfactant, TRITON X 100, but I.R. analysis of the remaining compound showed the accumulation of APE2 (alkylphenol with a two units length ethoxylated chain) which seemed very recalcitrant to further biodegradation. Twenty-five strains were isolated from this community, essentially Gram negative and were related to Pseudomonas, Oceanospirillum or Deleya genera. Among these strains, only four were able to degrade APE9–10 (TRITON X 100). They were related to the Pseudomonas genus and were of marine origin. Pure cultures performed with these strains on TRITON X 100 gave APE5 and APE4 as end products. These products were further degraded to APE2 by two other strains unable to degrade the initial surfactant.  相似文献   

20.
Halogenated compounds have been incorporated into the environment, principally through industrial activities. Nonetheless, microorganisms able to degrade halophenols have been isolated from neither industrial nor urban environments. In this work, the ability of bacterial communities from oligotrophic psychrophilic lakes to degrade 2,4,6-tribromophenol and 2,4,6-trichlorophenol, and the presence of the genes tcpA and tcpC described for 2,4,6-trichlorophenol degradation were investigated. After 10 days at 4°C, the microcosms showed the ability to degrade both halophenols. Nonetheless, bacterial strains isolated from the microcosms did not degrade any of the halophenols, suggesting that the degradation was done by a bacterial consortium. Genes tcpA and tcpC were not detected. Results demonstrated that the bacterial communities present in oligotrophic psycrophilic lakes have the ability to degrade halophenolic compounds at 4°C and the enzymes involved in their degradation could be codified in genes different to those described for bacteria isolated from environments contaminated by industrial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号