首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Saccharomyces cerevisiae Orc2 protein is a subunit of the origin recognition complex, ORC, which binds in a sequence-specific manner to yeast origins of DNA replication. With screens for orc2-1 synthetic lethal mutations and Orc2p two-hybrid interactors, a novel Orc2p-associated factor (Oaf1p) was identified. OAF1 is essential, its gene product is localized to the nucleus, and an oaf1 temperature-sensitive mutant arrests as large budded cells with a single nucleus. The mutant oaf1-2, isolated in the synthetic lethal screen, loses plasmids containing a single origin of DNA replication at a high rate, but it maintains plasmids carrying multiple potential origins of DNA replication. In addition, the OAF1 gene product tagged with the hemagglutinin antigen epitope binds to a DNA affinity column containing covalently linked tandem repeats of an essential origin element. These results suggest a role for OAFI in the initiation of DNA replication. Mutant alleles of cdc7 and cdc14 were also isolated in the orc2-1 synthetic lethal screen. Cdc7p, like Oaf1p, also interacts with Orc2p in two-hybrid assays.  相似文献   

2.
An important aspect of cell behaviour is that DNA replication happens only once per cell cycle. Replicated DNA is unable to re-replicate until cell division has occurred. Unreplicated DNA is in a replication-competent or 'licensed' state. The ability to replicate is lost in S phase and regained following passage through mitosis. Recent evidence has implicated an MCM (minichromosome maintenance) protein complex and the Cdc6 protein in determining replication competence. Regeneration of replication competence upon passage through mitosis entails changes in protein kinase activity, of which the MCMs are a likely target. Features of the mechanism that restricts DNA replication to once per cell cycle appear to be conserved throughout eukaryotes.  相似文献   

3.
4.
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.  相似文献   

5.
Saccharomyces cerevisiae Cdc6 is a protein required for the initiation of DNA replication. The biochemical function of the protein is unknown, but the primary sequence contains motifs characteristic of nucleotide-binding sites. To study the requirement of the nucleotide-binding site for the essential function of Cdc6, we have changed the conserved Lys114 at the nucleotide-binding site to five other amino acid residues. We have used these mutants to investigate in vivo roles of the conserved lysine in the growth rate of transformant cells and the complementation of cdc6 temperature-sensitive mutant cells. Our results suggest that replacement of Lys with Glu (K114E) and Pro (K114P) leads to loss-of-function in supporting cell growth, replacement of the Lys with Gln (K114Q) or Leu (K114L) yields partially functional proteins, and replacement with Arg yields a phenotype equivalent to wild-type, a silent mutation. To investigate what leads to the growth defects derived from the mutations at the nucleotide-binding site, we evaluated its gene functions in DNA replication by the assays of the plasmid stability and chromosomal DNA synthesis. Indeed, the K114P and K114E mutants showed the complete retraction of DNA synthesis. In order to test its effect on the G1/S transition of the cell cycle, we have carried out the temporal and spatial studies of yeast replication complex. To do this, yeast chromatin fractions from synchronized culture were prepared to detect the Mcm5 loading onto the chromatin in the presence of the wild-type Cdc6 or mutant cdc6(K114E) proteins. We found that cdc6(K114E) is defective in the association with chromatin and in the loading of Mcm5 onto chromatin origins. To further investigate the molecular mechanism of nucleotide-binding function, we have demonstrated that the Cdc6 protein associates with Orc1 in vitro and in vivo. Intriguingly, the interaction between Orc1 and Cdc6 is disrupted when the cdc6(K114E) protein is used. Our results suggest that a proper molecular interaction between Orc1 and Cdc6 depends on the functional ATP-binding of Cdc6, which may be a prerequisite step to assemble the operational replicative complex at the G1/S transition.  相似文献   

6.
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.  相似文献   

7.
The cyclins encoded by Kaposi sarcoma-associated herpesvirus and herpesvirus saimiri are homologs of human D-type cyclins. However, when complexed to cdk6, they have several activities that distinguish them from D-type cyclin-cdk6 complexes, including resistance to cyclin-dependent kinase inhibitors and an enhanced substrate range. We find that viral cyclins interact with and phosphorylate proteins involved in replication initiation. Using mammalian in vitro replication systems, we show that viral cyclin-cdk6 complexes can directly trigger the initiation of DNA synthesis in isolated late-G(1)-phase nuclei. Viral cyclin-cdk6 complexes share this capacity with cyclin A-cdk2, demonstrating that in addition to functioning as G(1)-phase cyclin-cdk complexes, they function as S-phase cyclin-cdk complexes.  相似文献   

8.
9.
The initiation step is a key process to regulate the frequency of DNA replication. Although recent studies in Archaea defined the origin of DNA replication (oriC) and the Cdc6/Orc1 homolog as an origin recognition protein, the location and mechanism of duplex opening have remained unclear. We have found that Cdc6/Orc1 binds to oriC and unwinds duplex DNA in the hyperthermophilic archaeon Pyrococcus furiosus, by means of a P1 endonuclease assay. A primer extension analysis further revealed that this localized unwinding occurs in the oriC region at a specific site, which is 12-bp long and rich in adenine and thymine. This site is different from the predicted duplex unwinding element (DUE) that we reported previously. We also discovered that Cdc6/Orc1 induces topological changes in supercoiled oriC DNA, and that this process is dependent on the AAA+ domain. These results indicate that topological alterations of oriC DNA by Cdc6/Orc1 introduce a single-stranded region at the 12-mer site, that could possibly serve as an entry point for Mcm helicase.  相似文献   

10.
11.
Abnormal DNA methylation and associated silencing of tumor suppressor genes are common to many types of cancers. Among the three coordinate DNA methyltransferases (Dnmts), Dnmt1 and Dnmt3b were both shown to be important for cancer cell survival and tumorigenesis. However, the relationship between Dnmt3a and tumorigenesis is still largely unknown. Here, we show that inhibition of Dnmt3a expression, by stable transfection of a Dnmt3a-RNA interference (RNAi) construct dramatically inhibited melanoma growth and metastasis in mouse melanoma models. Microarray analysis revealed that genes critical for the tumor immune response, were implicated in the inhibition of melanoma growth. Expression of a cluster of class I and class II MHC genes, class II transactivator (Ciita), as well as a subset of 5 chemokines (Cxcl9, Cxcl16, Ccl12, Ccl4, and Ccl2) were up-regulated. Furthermore, we determined that the promoter IV of Ciita was significantly demethylated in Dnmt3a-depleted tumors. In addition, several known tumor-related genes, which are critical for developmental processes and cell cycle, were confirmed to be misregulated, including TgfB1, Socs1, Socs2, E2F6, Ccne1, and Cyr61. The results presented in this report strongly suggest that Dnmt3a plays an essential role in melanoma tumorigenesis, and that the underlying mechanisms include the modulation of the tumor immune response, as well as other processes.  相似文献   

12.
Polo-like kinase 1 (Plk1) plays pivotal roles in mitosis; however, little is known about its function in S phase. In this study, we show that inhibition of Plk1 impairs DNA replication and results in slow S-phase progression in cultured cancer cells. We have identified origin recognition complex 2 (Orc2), a member of the DNA replication machinery, as a Plk1 substrate and have shown that Plk1 phosphorylates Orc2 at Ser188 in vitro and in vivo. Furthermore, Orc2-S188 phosphorylation is enhanced when DNA replication is under challenge induced by ultraviolet, hydroxyurea, gemcitabine, or aphidicolin treatment. Cells expressing the unphosphorylatable mutant (S188A) of Orc2 had defects in DNA synthesis under stress, suggesting that this phosphorylation event is critical to maintain DNA replication under stress. To dissect the mechanism pertinent to this observation, we showed that Orc2-S188 phosphorylation associates with DNA replication origin and that cells expressing Orc2-S188A mutant fail to maintain the functional pre-replicative complex (pre-RC) under DNA replication stress. Furthermore, the intra-S-phase checkpoint is activated in Orc2-S188A-expressing cells to cause delay of S-phase progress. Our study suggests a novel role of Plk1 in facilitating DNA replication under conditions of stress to maintain genomic integrity.  相似文献   

13.
Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, whereas its partners in DNA repair (UvrA/B and MutL/S) are not. We conclude that UvrD participates in replication fork reversal in E. coli.  相似文献   

14.
The unique mitochondrial DNA of trypanosomes is a catenated network of minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for survival, and requires an elaborate topoisomerase‐mediated release and reattachment mechanism for minicircle theta structure replication. At least seven DNA polymerases (pols) are involved in kDNA transactions, including three essential proteins related to bacterial DNA pol I (POLIB, POLIC and POLID). How Trypanosoma brucei utilizes multiple DNA pols to complete the topologically complex task of kDNA replication is unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using RNA interference (RNAi). POLIB silencing resulted in growth inhibition and progressive loss of kDNA networks. Additionally, unreplicated covalently closed precursors become the most abundant minicircle replication intermediate as minicircle copy number declines. Leading and lagging strand minicircle progeny similarly declined during POLIB silencing, indicating POLIB had no apparent strand preference. Interestingly, POLIB RNAi led to the accumulation of a novel population of free minicircles that is composed mainly of covalently closed minicircle dimers. Based on these data, we propose that POLIB performs an essential role at the core of the minicircle replication machinery.  相似文献   

15.
An essential role for DNA methyltransferase DNMT3B in cancer cell survival   总被引:13,自引:0,他引:13  
Abnormal methylation and associated silencing of tumor suppressor genes is a common feature of many types of cancers. The observation of persistent methylation in human cancer cells lacking the maintenance methyltransferase DNMT1 suggests the involvement of other DNA methyltransferases in gene silencing in cancer. To test this hypothesis, we have evaluated methylation and gene expression in cancer cells specifically depleted of DNMT3A or DNMT3B, de novo methyltransferases that are expressed in adult tissues. Here we have shown that depletion of DNMT3B, but not DNMT3A, induced apoptosis of human cancer cells but not normal cells. DNMT3B depletion reactivated methylation-silenced gene expression but did not induce global or juxtacentromeric satellite demethylation as did specific depletion of DNMT1. Furthermore, the effect of DNMT3B depletion was rescued by exogenous expression of either of the splice variants DNMT3B2 or DNMT3B3 but not DNMT1. These results indicate that DNMT3B has significant site selectivity that is distinct from DNMT1, regulates aberrant gene silencing, and is essential for cancer cell survival.  相似文献   

16.
Archaeal replication machinery represents a core version of this in eukaryotes. The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1, SsoCdc6-2, and SsoCdc6-3). In this study, we investigate the DNA-binding activities of the N-terminal AAA+ ATPase domains of these Orc1/Cdc6 proteins, including their functional interactions with the other SsoCdc6 proteins, on duplex DNA substrates derived from the origins of S. solfataricus. We showed that the ATPase domain of SsoCdc6-2 retained to a great extent the origin DNA-binding activity, and likewise maintained its stimulating effect on SsoCdc6-3. Second, the ATPase domain of SsoCdc6-1, which also stimulated the DNA-binding ability of SsoCdc6-3, demonstrated a significantly improved DNA-binding activity at the forked substrate, but only showed a very weak ability towards the blunt DNA. Third, the ATPase domain of SsoCdc6-3, although having lost much of its DNA-binding activity from the origin, inhibited both SsoCdc6-1 and SsoCdc6-2. These imply that the N-terminal AAA+ ATPase domain of archaeal Orc1/Cdc6 protein could be differentially involved in origin recognition during DNA replication initiation even if lacking conventional C-terminal winged helix DNA-binding elements. Our findings further propose that conserved AAA+ ATPase domains of Orc1/Cdc6 proteins determine their defined and coordinated functions not only in the archaeon species but also in eukaryotes during the early events of DNA replication.  相似文献   

17.
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.  相似文献   

18.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号