首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Surface accessible amino acids can play an important role in proteins. They can participate in enzyme's active center structure or in specific intermolecular interactions. Thus, the information about selected amino acids' surface accessibility can contribute to the understanding of protein structure and function. In this paper, we present a simple method for surface accessibility mapping of tryptophan side chains by their chemical modification and identification by MALDI-TOF mass spectrometry. The reaction with 2-hydroxy-5-nitrobenzyl bromide, a common and highly specific covalent modification of tryptophan, seems to be very useful for this purpose. The method was tested on four model proteins with known spatial structure. In the native proteins (1) only surface accessible tryptophan side chains were found to react with the modification agent and (2) no buried one was found to react at lower reagent concentrations. These results indicate that the described method can be a potent tool for identification of surface-located tryptophan side chain in a protein of unknown conformation.  相似文献   

2.
Solvent accessibility can be used to evaluate protein structural models, identify binding sites, and characterize protein conformational changes. The differential modification of amino acids at specific sites enables the accessible surface residues to be identified by mass spectrometry. Tryptophan residues within proteins can be differentially labeled with halocompounds by a photochemical reaction. In this study, tryptophan residues of carbonic anhydrase are reacted with chloroform, 2,2,2-trichloroethanol (TCE), 2,2,2-trichloroacetate (TCA), or 3-bromo-1-propanol (BP) under UV irradiation at 280 nm. The light-driven reactions with chloroform, TCE, TCA, and BP attach a formyl, hydroxyethanone, carboxylic acid, and propanol group, respectively, onto the indole ring of tryptophan. Trypsin and chymotrypsin digests of the modified carbonic anhydrase are used to map accessible tryptophan residues using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Tryptophan reactivity is determined by identifying peptides with tryptophan residues modified with the appropriate label. The reactivity is calculated from the frequency that the modification is identified and a semiquantitative measure of the amount of products formed. Both of these measures of tryptophan reactivity correlate significantly with the accessible surface area of tryptophan residues in carbonic anhydrase determined from the X-ray crystal structure. Therefore the photochemical reaction of halocompounds with tryptophan residues in carbonic anhydrase indicates the degree of solvent accessibility of these residues.  相似文献   

3.
Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding.  相似文献   

4.
The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.  相似文献   

5.
Despite astounding diversity in their structure and function, proteins are constructed from 22 protein or ‘canonical’ amino acids. Hundreds of amino acid analogues exist; many occur naturally in plants, some are synthetically produced or can be produced in vivo by oxidation of amino acid side-chains. Certain structural analogues of the protein amino acids can escape detection by the cellular machinery for protein synthesis and become misincorporated into the growing polypeptide chain of proteins to generate non-native proteins. In this review we seek to provide a comprehensive overview of the current knowledge on the biosynthetic incorporation of amino acid analogues into proteins by mammalian cells. We highlight factors influencing their incorporation and how the non-native proteins generated can alter cell function. We examine the ability of amino acid analogues, representing those commonly found in damaged proteins in pathological tissues, to be misincorporated into proteins by cells in vitro, providing us with a useful tool in the laboratory to generate modified proteins representing those present in a wide-range of pathologies. We also discuss the evidence for amino acid analogue incorporation in vivo and its association with autoimmune symptoms. We confine the review to studies in which the synthetic machinery of cell has not been modified to accept non-protein amino acids.  相似文献   

6.
The surface topology of the Minibody, a small de novo-designed beta-protein, has been probed by a strategy that combines selective chemical modification with a variety of reagents and mass spectrometric analysis of the modified fragments. Under appropriate conditions, the susceptibility of individual residues primarily depends on their surface accessibility so that their relative reactivities can be correlated with their position in the tertiary structure of the protein. Moreover, this approach provides information on interacting residues, since intramolecular interactions might greatly affect the reactivity of individual side chains by altering their pKa values. The results of this study indicate that, while overall the Minibody model is correct, the beta-sheet formed by the N- and C-terminal segments is most likely distorted. This is also in agreement with previous results that were obtained using a similar approach where mass spectrometry was used to identify Minibody fragments from limited proteolysis (Zappacosta F, Pessi A, Bianchi E, Venturini S, Sollazzo M, Tramontano A. Marino G, Pucci P. 1996. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: The case of Minibody. Protein Sci 5:802-813). The chemical modification approach, in combination with limited proteolysis procedures, can provide useful, albeit partial, structural information to complement simulation techniques. This is especially valuable when, as in the Minibody case, an NMR and/or X-ray structure cannot be obtained due to insufficient solubility of the molecule.  相似文献   

7.
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and biomolecular structures.  相似文献   

8.
Predicting surface exposure of amino acids from protein sequence   总被引:8,自引:0,他引:8  
The amino acid residues on a protein surface play a key role in interaction with other molecules, determined many physical properties, and constrain the structure of the folded protein. A database of monomeric protein crystal structures was used to teach computer-simulated neural networks rules for predicting surface exposure from local sequence. These trained networks are able to correctly predict surface exposure for 72% of residues in a testing set using a binary model, (buried/exposed) and for 54% of residues using a ternary model (buried/intermediate/exposed). In the ternary model, only 11% of the exposed residues are predicted as buried and only 5% of the buried residues are predicted as exposed. Also, since the networks are able to predict exposure with a quantitative confidence estimate, it is possible to assign exposure for over half of the residues in a binary model with greater than 80% accuracy. Even more accurate predictions are obtained by making a consensus prediction of exposure for a homologous family. The effect of the local environment of an amino acid on its accessibility, though smaller than expected, is significant and accounts for the higher success rate of prediction than obtained with previously used criteria. In the absence of a three-dimensional structure, the ability to predict surface accessibility of amino acids directly from the sequence is a valuable tool in choosing sites of chemical modification or specific mutations and in studies of molecular interaction.  相似文献   

9.
10.
Distribution of accessible surfaces of amino acids in globular proteins   总被引:1,自引:0,他引:1  
C Lawrence  I Auger  C Mannella 《Proteins》1987,2(2):153-161
  相似文献   

11.
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.  相似文献   

12.
Wang JY  Ahmad S  Gromiha MM  Sarai A 《Biopolymers》2004,75(3):209-216
We developed dictionaries of two-, three-, and five-residue patterns in proteins and computed the average solvent accessibility of the central residues in their native proteins. These dictionaries serve as a look-up table for making subsequent predictions of solvent accessibility of amino acid residues. We find that predictions made in this way are very close to those made using more sophisticated methods of solvent accessibility prediction. We also analyzed the effect of immediate neighbors on the solvent accessibility of residues. This helps us in understanding how the same residue type may have different accessible surface areas in different proteins and in different positions of the same protein. We observe that certain residues have a tendency to increase or decrease the solvent accessibility of their neighboring residues in C- or N-terminal positions. Interestingly, the C-terminal and N-terminal neighbor residues are found to have asymmetric roles in modifying solvent accessibility of residues. As expected, similar neighbors enhance the hydrophobic or hydrophilic character of residues. Detailed look-up tables are provided on the web at www.netasa.org/look-up/.  相似文献   

13.
A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C.  相似文献   

14.
Immune reactions to citrulline-containing proteins appear to be central in the immunopathogenesis of rheumatoid arthritis. Citrulline residues are introduced into proteins by deimination of arginine residues, likely by an enzymatic process. There is a need to characterize which proteins in the inflamed joints of rheumatoid patients contain citrulline in situ. The characterization of deiminated proteins will be greatly facilitated by specific modification of peptide-bound citrulline residues that will enable specific enrichment and detection of citrulline-containing peptides. This study presents the details of such a modification method. The chemistry behind the reaction of the ureido group of citrulline with 2,3-butanedione in the presence of antipyrine is unraveled. Parameters for optimization of the reaction with respect to specificity and completeness, including the testing of different acids, reactant concentrations, and reaction time, are presented. This modification reaction is specific for citrulline residues. The modified product shows a characteristic mass shift of +238Da, as demonstrated by mass spectrometry. The product absorbs UV-Vis radiation at 464nm, and it is demonstrated that this can be used to selectively monitor citrulline-containing peptides during the separation of protein digests. Finally, the structure of the product of modified citrulline is solved by nuclear magnetic resonance spectroscopy using N-butylurea as a model substance. The results presented should facilitate the development of tags that can be used for the enrichment and subsequent detection of citrulline-containing protein fragments by mass spectrometry.  相似文献   

15.
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine and tyrosine have been extensively studied, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins has been discovered in prokaryotic organisms as well as in eukaryotic cells. The ability to biochemically analyze phosphohistidine residues in proteins, however, is severely hampered by its extreme lability under acidic conditions. In our studies we have found that by replacing the phosphate linked to the histidine residue with a thiophosphate, a phosphohistidine derivative with increased stability is formed. This allows the analysis of phosphohistidine-containing proteins by established biochemical techniques and will greatly aid in the investigation of the role of this posttranslational modification in cellular processes.  相似文献   

16.
The three-dimensional X-ray structure of the leucine-binding protein (36,900 Mr and 346 residues), an active transport component of Escherichia coli, has been determined by the method of molecular replacement, using the refined structure of the Leu/Ile/Val-binding protein (344 residues) as the model structure. The two amino acid-binding proteins have 80% sequence identity and, although both crystallize in the same space group, they have very different unit cell dimensions. The rotation function yielded one significant peak, which subsequently led to a single self-consistent translation function solution. The model was first refined by the constrained least-squares method, with each of the two domains of the molecule treated separately to allow for any small change in the relative orientation of the two domains. The model was then modified in order to reflect the 72 changes in amino acid side-chains and two insertions in going from the Leu/Ile/Val-binding protein sequence to that of the L-leucine-binding protein. Final structure refinement, using the restrained least-squares technique, resulted in an R-factor of 0.20 for 13,797 reflections to a resolution of 2.4 A. The model is comprised of 2600 protein atoms and 91 solvent molecules. The L-leucine-binding protein structure is, as expected, very similar to the Leu/Ile/Val-binding protein structure; both are in the unliganded conformation with the cleft between the two domains wide open and easily accessible. The superimposing of the structures yields a root-mean-square difference of 0.68 A in the alpha-carbon atoms of the 317 equivalent residues. The five regions of the leucine-binding protein structure that differ by more than 1.6 A from the Leu/Ile/Val-binding protein structure are far from the major portion of the ligand-binding site, which is located in one domain of the bilobate protein. Between the structures, there are three differences in the amino acid side-chains that form the major portion of the substrate-binding sites. These substitutions, by themselves, fail to clearly explain the differences in the specificities for branched aliphatic amino acids.  相似文献   

17.
Chemical protein modifications facilitate the investigation of natural posttranslational protein modifications and allow the design of proteins with new functions. Proteins can be modified at a late stage on amino acid side chains by chemical methods. The indole moiety of tryptophan residues is an emerging target of such chemical modification strategies because of its unique reactivity and low abundance. This review provides an overview of the recently developed methods of tryptophan modification at the peptide and protein levels.  相似文献   

18.
We have determined the number of histidine residues available for chemical modification with the specific reagent diethylpyrocarbonate in both bovine and goat -crystallins. Results indicate that there are two distinctly different classes of histidine residues in the native protein. Out of 300 total histidine residues in the protein (on the basis of 800-kDa protein molecular weight) about 170±2 residues have been found to be modified by the reagent. The remaining 130±2 residues are modified when the protein is partially denatured in 1.5 M guanidine hydrochloride. The H+-titration behavior of the histidine residues in the protein corroborates this result. The observed differential accessibility of histidine residues may be important in maintaining the surface hydrophobicity of the aggregate as well as in stabilizing its quaternary structure.  相似文献   

19.
Xu Z  Zhang C  Liu S  Zhou Y 《Proteins》2006,63(4):961-966
Solvent accessibility, one of the key properties of amino acid residues in proteins, can be used to assist protein structure prediction. Various approaches such as neural network, support vector machines, probability profiles, information theory, Bayesian theory, logistic function, and multiple linear regression have been developed for solvent accessibility prediction. In this article, a much simpler quadratic programming method based on the buriability parameter set of amino acid residues is developed. The new method, called QBES (Quadratic programming and Buriability Energy function for Solvent accessibility prediction), is reasonably accurate for predicting the real value of solvent accessibility. By using a dataset of 30 proteins to optimize three parameters, the average correlation coefficients between the predicted and actual solvent accessibility are about 0.5 for all four independent test sets ranging from 126 to 513 proteins. The method is efficient. It takes only 20 min for a regular PC to obtain results of 30 proteins with an average length of 263 amino acids. Although the proposed method is less accurate than a few more sophisticated methods based on neural network or support vector machines, this is the first attempt to predict solvent accessibility by energy optimization with constraints. Possible improvements and other applications of the method are discussed.  相似文献   

20.
Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号